Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T07:22:21.713Z Has data issue: false hasContentIssue false

Effect of emersion on soft-shell clam, Mya arenaria and the mussel, Mytilus edulis seeds in relation to developmentof vitality indices

Published online by Cambridge University Press:  16 December 2014

Rachel Picard
Affiliation:
Institut des Sciences de la Mer à Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Bruno Myrand
Affiliation:
Merinov, 107-125 chemin du Parc, Cap-aux-Meules, Québec, G4T 1B3, Canada
Réjean Tremblay*
Affiliation:
Institut des Sciences de la Mer à Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
*
a Corresponding author:[email protected]
Get access

Abstract

Blue mussels (Mytilus edulis) and soft-shell clams (Myaarenaria) are both aquaculture species in east coast of Canada and US shellfishfarmers take advantage of the byssal threads production of mussels for suspension cultureand the burrowing behaviour of soft-shell clams for enhancement practices. It is importantthat these animals attach and burrow efficiently to minimize losses during rearing. Theaim of this work was to study two potential vitality indices on mussels (23.6 ± 0.1 mm) and clams (22.6 ± 0.1 mm) seeds following variousperiods of emersion: attachment strength of Mytilus edulis and burrowingability of Mya arenaria. The effect of emersion on energy content(proteins, lipids, glycogen) was also examined. We observed no significant decrease in theattachment strength of mussels after air exposure for 78 h or in the burrowing efficiencyof soft-shell clams after 54 h. Air exposure had no effect on different lipid classes,proteins, or glycogen content in either mussel or clam tissues. The stressful emersionevent induced in our study may not have been high enough to induce detectable behaviouralresponses. This can be explained by the bivalves’ ability to adapt their metabolism tominimize activity during air exposure. In doing so, they do not consume their energyreserves, which are then still available when specimens are reimmersed. Thus mussels areable to efficiently produce byssal threads and clams to burrow into sediments as soon asthey are back in the water.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, E.A., Bainy, A.C.D., Dafre, A.L., Gomes, O.F., Medeiros, M.H.G., Mascio, P.D., 2005, Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. J. Exp. Mar. Biol. Ecol. 318, 2130. CrossRefGoogle Scholar
Babarro, J.M.F., Labarta, U., Reiriz, M.J.F., 2007, Energy metabolism and performance of Mytilus galloprovincialis under anaerobiosis. J. Mar. Biol. Assoc. UK 87, 941946. CrossRefGoogle Scholar
Babarro, J.M.R., Reiriz, M.J.F., 2010, Secretion of byssal threads in Mytilus galloprovincialis: quantitative and qualitative values after spawning stress. J. Comp. Physiol. 180, 95104. CrossRefGoogle ScholarPubMed
Beal, B.F., Vencile, K.W., 2001, Short-term effects of commercial clam (Mya arenaria L.) and worm (Glycera dibranchiata Ehlers) harvesting on survival and growth of juveniles of the softshell clam. J. Shellfish Res. 20, 11451157. Google Scholar
Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254. CrossRefGoogle ScholarPubMed
Brenner, M., Broeg, K., Wilhelm, C., Buchholz, C., Koehler, A., 2012, Effect of air exposure on lysosomal tissues of Mytilus edulis L. from natural intertidal wild beds and submerged culture ropes. Comp. Biochem. Physiol. A 161, 327336. CrossRefGoogle ScholarPubMed
Brousseau, D.J., 1978, Spawning cycle, fecundity and recruitment in a population of soft-shell clam, Mya arenaria, from Cape Ann, Massachusetts. Fish. Bull. 76, 155166. Google Scholar
Brulotte S.M., Giguère, M., 2007, Reproduction et taille à la maturité sexuelle de la mye commune (Mya arenaria) au Québec. Rapp. Tech. Can. Sci. Halieut. Aquat. 2698, 40 p.
Caers, M., Coutteau, P., Sorgeloos, P., 2000, Impact of starvation and of feeding algal and artificial diets on the lipid content and composition of juvenile oysters (Crassostrea gigas) and clams (Tapes philippinarum). Mar. Biol. 136, 891899. CrossRefGoogle Scholar
Carr, R.S., Neff, J.M., 1984, Quantitative semi-automated enzymatic assay for tissue glycogen. Comp. Biochem. Physiol. 77B, 447449. Google Scholar
Carton, A.G., Jeffs, A.G., Foote, G., Palmer, H., Bilton, J., 2007, Evaluation of methods for assessing the retention of seed mussels (Perna canaliculus) prior to seeding for grow-out. Aquaculture 262, 521527. CrossRefGoogle Scholar
Clements, J.C., Hunt, H.L., 2014, Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.). J. Exp. Mar. Biol. Ecol. 453, 6269. CrossRefGoogle Scholar
de Zwaan, A., Wijsman, T.C.M., 1976, Anaerobic metabolism in Bivalvia (Mollusca): Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. 54B, 313324. Google Scholar
de Zwaan A.E., Mathieu M. 1992, Cellular biochemistry and endocrinology. In: Gosling E. (Ed.) The mussel Mytilus: ecology, physiology genetics and culture. Amsterdam, Elsevier.
Emerson, C.W., Grant, J., Rowell, T.W., 1990, Indirect effects of clam digging on the viability of softshell clams, Mya arenaria L. Neth. J. Sea Res. 27, 109118. CrossRefGoogle Scholar
Epelbaum, A., Pearce, C.M., Yuan, S., Plamondon, N. Gurney-Smith, H., 2011, Effects of stocking density and substratum on the survival, growth, burrowing behaviour and shell morphology of juvenile basket cockle, Clinocardium nuttallii: implications for nursery seed production and field outplanting. Aquac. Res. 42, 975986. CrossRefGoogle Scholar
Gabbott, P.A., Bayne, B.L., 1973, Biochemical effects of temperature and nutritive stress on Mytilus edulis L. J. Mar. Biol. Assoc. UK 52, 269286. CrossRefGoogle Scholar
Guderley, H., Demers, A., Couture, P. 1994, Acclimatization of blue mussel (Mytilus edulis Linnaeus, 1758) to intertidal conditions: effects on mortality and gaping during air exposure. J. Shellfish Res. 13, 379385. Google Scholar
Harding, J.M., Couturier, C., Parsons, G.J., Ross, N.W., 2004, Evaluation of the neutral red assay as a stress response indicator in cultivated mussels (Mytilus spp.) in relation to post-harvest processing activities and storage conditions. Aquaculture 231, 315326. CrossRefGoogle Scholar
Hawkins, A.J.S., Bayne, B.L., 1985, Relationships between the synthesis and breakdown of protein, dietary absorption and turnovers of nitrogen and carbon in the blue mussel, Mytilus edulis L. Oecologia 66, 4249. CrossRefGoogle ScholarPubMed
Hennebicq, R., Fabra, G., Pellerin, C., Marcotte, I., Myrand, B., Tremblay, R., 2013, The effect of spawning of cultured mussels (Mytilus edulis) on mechanical properties, chemical and biochemical composition of byssal threads. Aquaculture 410–411, 1117. CrossRefGoogle Scholar
Hole, L.M., Moore, M.N., Ballamy, D., 1995, Age-related cellular and physiological reactions to hypoxia and hyperthermia in marine mussels. Mar. Ecol. Prog. Ser. 122, 173178. CrossRefGoogle Scholar
Hunt, H.L., Mullineaux, L.S., 2002, The roles of predation and postlarval transport in recruitment of the soft shell clam (Mya arenaria). Limnol. Oceanogr. 47, 151164. CrossRefGoogle Scholar
Lachance, A.-A., Myrand, B., Tremblay, R., Koutitonsky, V., Carrington, E., 2008, Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119129. CrossRefGoogle Scholar
Lachance, A.-A., Hennebicq, R., Myrand, B., Sévigny, J.-M., Kraffe, E., Marty, Y., Marcotte, I., Tremblay, R., 2011, Biochemical and genetic characteristics of suspension-cultured mussels (Mytilus edulis) in relation to byssal thread production and losses by fall-off. Aquat. Living. Resour. 24, 283293. CrossRefGoogle Scholar
Lardies, M.A., Clasing, E., Navarro, J.M., Stead, R.A, 2001, Effects of environmental variables on burial depth of two infaunal bivalves inhabiting a tidal flat in southern Chile. J. Mar. Biol. Assoc. UK 81, 809816. CrossRefGoogle Scholar
LeBlanc, N., Landry, T., Stryhn, H., Tremblay, R., McNiven, M., Davidson, J., 2005. The effect of high air and water temperature on juvenile Mytilus edulis in Prince Edward Island, Canada. Aquaculture 243, 185194. CrossRefGoogle Scholar
Lee, A.-C., Lee, Y.-C., Chin, T.-S., 2012, Effects of low dissolved oxygen on the digging behaviour and metabolism of the hard clam (Meretrix lusoria). Aquac. Res. 43, 113. CrossRefGoogle Scholar
Le Moullac, G., Queau, I., Le Souchu, P., Pouvreau, S., Moal, J., Le Coz, J.R., Samain, J.-F., 2007, Metabolic adjustments in the oyster Crassostrea gigas according to oxygen level and temperature. Mar. Biol. Res. 3, 357366. CrossRefGoogle Scholar
Long, W.C., Brylawski, B.J., Seitz, R.D., 2008, Behavioral effects of low dissolved oxygen on the bivalve Macoma balthica. J. Exp. Mar. Biol. Ecol. 359, 3439. CrossRefGoogle Scholar
Mallet A.L., Myrand B., 1995, The culture of blue mussels in Atlantic Canada. In: Boghen A. D. (Ed.) Cold water aquaculture in Atlantic Canada, 2nd edition, CIRRD, Univ. Moncton NB, pp. 257–298.
Matthiessen, G.C., 1960, Observations on the ecology of the soft clam, Mya arenaria. Limnol. Oceanogr. 5, 291300. Google Scholar
Moeser, G.M., Carrington, E., 2006, Seasonal variation in mussel byssal thread mechanics. J. Exp. Biol. 209, 19962003. CrossRefGoogle ScholarPubMed
Moreno, J.E.A., Moreno, V.S., Brenner, R.R., 1976, Lipid metabolism of the yellow clam, Mesodesma mactroides: Composition of the lipids. Lipids 11, 334340. CrossRefGoogle ScholarPubMed
Newell C.R., 1991, The soft-shell clam Mya arenaria (Linnaeus) in North America. In: Menzel W. (Ed.), Estuarine and marine bivalve mollusk culture. CRC Press, Boca Raton, Florida, pp. 1–10.
Pariseau, J., Myrand, B., Desrosiers, G., Chevarie, L., Giguère, M., 2007, Influences of physical and biological variables on softshell clam (Mya arenaria Linneaus, 1758) burial. J. Shellfish Res. 26, 391400. CrossRefGoogle Scholar
Parrish, C.C., 1987, Separation of aquatic lipid classes by chromarod thin-layer chromatography with measurement by Iatroscan Flame Inozation detection. Can. J. Fish. Aquat. Sci. 44, 722731. CrossRefGoogle Scholar
Pernet, F., Tremblay, R., Comeau, L., Guderley, H., 2007, Temperature adaptation in two bivalve species from different thermal habitat: energetic and remodeling of membrane lipids. J. Exp. Biol. 210, 29993014. CrossRefGoogle Scholar
Rodhouse, P.G., McDonald, J.H., Newell, R.I.E., Koehn, R.K., 1986, Gamete production, somatic growth and multiple-locus enzyme heterozygosity in Mytilus edulis. Mar. Biol. 90, 209214. CrossRefGoogle Scholar
Roseberry, L., Vincent, B., Lemaire, C., 1991, Croissance et reproduction de Mya arenaria dans la zone intertidale de l’estuaire du Saint-Laurent. Can. J. Zool. 69, 724732. CrossRefGoogle Scholar
Seguin-Heine, M.-O., Lachance, A.-A., Genard, B., Myrand, B., Pellerin, C., Marcotte, I., Tremblay, R., 2014, Impact of open sea habitat on byssus attachment of suspension-cultured blue mussels (Mytilus edulis). Aquaculture 426–427, 189196. CrossRefGoogle Scholar
Shick, J.M., Widdows, J., 1981, Direct and indirect calorimetric measurements of metabolic rate in bivalve molluscs during aerial exposure. Am. Zool. 21, 983996. Google Scholar
Shick, J.M., Gnaiser, E., Widdows, J., Bayne, B.L., de Zwaan, A., 1986, Activity and metabolism in the mussel Mytilus edulis L. during intertidal hypoxia and aerobic recovery. Physiol. Zool. 59, 627642. CrossRefGoogle Scholar
Sobral, P., Widdows, J., 1997, Influence of hypoxia and anoxia on the physiological responses of the clam Ruditapes decussatus from southern Portugal. Mar. Biol. 127, 455461. CrossRefGoogle Scholar
Statistics-Canada 2010, Canadian agriculture statistics – aquaculture statistics 2009. Report No 23-222-X.
Thieltges, D.W., Buschbaum, C., 2007, Mechanism of an epibiont burden: Crepidula fornicata increases byssus thread production by Mytilus edulis. J. Moll. Stud. 73, 7577. CrossRefGoogle Scholar
Thompson, R.J., Ratcliffe, N.A., Bayne, B.L., 1974, Effects of starvation on structure and function in the digestive gland of the mussel (Mytilus edulis L.). J. Mar. Biol. Assoc. UK 54, 699712. CrossRefGoogle Scholar
Tremblay, R., Pellerin-Massicotte, J., 1997, Effect of the tidal cycle on lysosomal membrane stability in the digestive gland of Mya arenaria and Mytilus edulis L. Comp. Biochem. Physiol. 117A, 99104. CrossRefGoogle Scholar
Webb, S.C., Heasman, K.G., 2005, Evaluation of fast green uptakes as a simple fitness test for spat of Perna canaliculus (Gmelin, 1791). Aquaculture 252, 305316. CrossRefGoogle Scholar
Widdows J., 1989, Calorimetric and energetic studies of marine bivalves in energy transformations in cells and organisms. In: Wieser W., Gnaiger E. (Eds.) Proc. 10th conference of the European Society for Comparative Physiology and Biochemistry. Georg Thieme, Verlag Stuttgart, New York, pp. 145–154.
Widdows, J., Bayne, B.L., Livingstone, D.R., Newelland, R.I.E., Donkin, P., 1979, Physiological and biochemical responses of bivalve molluscs to exposure to air. Comp. Biochem. Physiol. 62A, 301308. CrossRefGoogle Scholar
Zandee, D.I., Holwerda, D.A., Kluytmans, J.H., de Zwaan, A., 1986, Metabolic adaptations to environmental anoxia in the intertidal bivalve mollusc Mytilus edulis L. Neth. J. Zool. 26, 322343. Google Scholar
Zardi, G.I., McQuaid, C.D., Nicastro, K.R., 2007, Balancing survival and reproduction: seasonality of wave action, attachment strength and reproductive output in indigenous Perna perna and invasive Mytilus galloprovincialis mussels. Mar. Ecol. Prog. Ser. 334, 155163. CrossRefGoogle Scholar