Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T03:28:36.388Z Has data issue: false hasContentIssue false

Effect of dietary water content on European sea bass(Dicentrarchus labrax) growth and disease resistance

Published online by Cambridge University Press:  28 November 2014

Cyrille Przybyla*
Affiliation:
IFREMER, Unité Biologie des organismes marins exploités, UMR 5119 Ecosym, Chemin de Maguelone, 34250 Palavas les Flots, France
Julie Fievet
Affiliation:
IFREMER, Centre du Pacifique, Unité Ressources marines en Polynésie Française, Taravao, Tahiti, French Polynesia
Myriam Callier
Affiliation:
IFREMER, Unité Biologie des organismes marins exploités, UMR 5119 Ecosym, Chemin de Maguelone, 34250 Palavas les Flots, France
Jean-Paul Blancheton
Affiliation:
IFREMER, Unité Biologie des organismes marins exploités, UMR 5119 Ecosym, Chemin de Maguelone, 34250 Palavas les Flots, France
*
a Corresponding author:[email protected]
Get access

Abstract

The effect of dietary water content on Dicentrarchus labrax growthparameters and resistance to Vibrio anguillarum infection wasinvestigated using commercial pellets with identical energy contents and differentmoisture levels. The first experiment hypothesis was that moisturizing pelleted ration canhave an impact on Dicentrarchus labrax growth performance by theosmoregulation energy cost reduction. In a second time, the experiment explores the effectof water addition in pellets on the fish resistance to a disease. A specific device wasbuilt to uniformly moisturize dry pellets to different moisture levels, i.e. 8%, 20%, 40%and 60%. After an acclimation period and a 54-day rearing period, the control fish hadgrown from 72.7 ± 17.9 g to133.3 ± 29.4 g. Nosignificant differences were recorded for fish growth parameters. After the growth period,the tagged fish were mixed and challenged by bath exposure to live Vibrioanguillarum in triplicate. After 7 days, mortality was significantly lower inthe group of fish fed with pellets containing 60% water. Adding water toDicentrarchus labrax feed did not affect fish growth parameters butincrease its resistance to a Vibrio anguillarum infection. The moisturizing processcould be used to add specific compounds (such as probiotics or vitamins) to pellets justbefore fish feeding and could have a positive effect on fish rearing.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendschneider, K., Robinson, R.J., 1952, A new spectrophotometric method for the determination of nitrite in sea water. J. Mar. Res. 11, 8796. Google Scholar
Bromley, P., 1980, The effect of dietary water content and feeding rate on the growth and food conversion efficiency of turbot (Scophthalmus maximus L.). Aquaculture 20, 9199. CrossRefGoogle Scholar
Bucking, C., Fitzpatrick, J.L., Nadella, S.R., McGaw, I.J., Wood, C.M., 2011, Assimilation of water and dietary ions by the gastrointestinal tract during digestion in seawater-acclimated rainbow trout. J. Comp. Physiol. B- Biochem. Syst. Environ. Physiol. 181, 615630. CrossRefGoogle ScholarPubMed
Buddington, R.K., Krogdahl, A., BakkeMcKellep,, A.M., 1997, The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiol. Scand. 161, 6780. Google Scholar
Chatzifotis, S., Papadakis, A.E., Divanach, P., 2005, Effect of dietary water on growth of dentex Dentex dentex. Fish. Sci. 71, 12431248. CrossRefGoogle Scholar
Chou, R., 1984, The effect of dietary water content on the feed intake, food conversion efficiency and growth of young sea bass (Lates calcarifer). Singapore J. Primary Ind. 12, 120127. Google Scholar
Cruz, E.M., Almatar, S., Abdul Elah, K., Al-Yaqout, A., 2000, Preliminary studies on the performance and feeding behavior of silver pomfret (Pampus argenteus Euphrasen) fingerling fed with commercial feed and reared in fiberglass tanks. Asian Fish. Sci. 13, 191199. Google Scholar
Deplano, M., Connes, R., Diaz, J.P., 1991, Postvalvular enterocytes in feral and farm-reared sea bass Dicentrarchus labrax - hypervacuolization related to artificial feed. Dis. Aquat. Org. 11, 918. CrossRefGoogle Scholar
Deviller, G., Aliaume, C., Nava, M.A.F., Casellas, C., Blancheton, J.P., 2004, High-rate algal pond treatment for water reuse in an integrated marine fish recirculating system: effect on water quality and sea bass growth. Aquaculture 235, 331344. CrossRefGoogle Scholar
Dosdat, A., Person-Le Ruyet, J., Coves, D., Dutto, G., Gasset, E., Le Roux, A., Lemarie, G., 2003, Effect of chronic exposure to ammonia on growth, food utilisation and metabolism of the European sea bass (Dicentrarchus labrax). Aquat. Living Resour. 16, 509520. CrossRefGoogle Scholar
Efthimiou, S., Divanach, P., Rosenthal, H., 1994, Growth, food conversion and agonistic behavior in commun dentex (Dentex dentex) juveniles fed on pelleted moist and dry diets. Aquat. Living Resour. 7, 267275. CrossRefGoogle Scholar
European-Union, 2009, Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament, art 11, paragrah 5. Official Journal of the European Union L 229, 1 September 2009, pp. 1–28.
Grove, D., Genna, R., Paralika, V., Boraston, J., Hornyold, M.G., Siemens, R., 2001, Effects of dietary water content on meal size, daily food intake, digestion and growth in turbot, Scophthalmus maximus (L.). Aquac. Res. 32, 433442. CrossRefGoogle Scholar
Grzeskowiak, L., Carmen Collado, M., Vesterlund, S., Mazurkiewicz, J., Salminen, S., 2011, Adhesion abilities of commensal fish bacteria by use of mucus model system: quantitative analysis. Aquaculture 318, 3336. CrossRefGoogle Scholar
Gwyther, D., Grove, D.J., 1981, Gastric emptying in Limanda limanda and the return of appetite J. Fish Biol. 18, 245259. CrossRefGoogle Scholar
Heuer, R.M., Esbaugh, A.J., Grosell, M., 2012, Ocean acidification leads to counterproductive intestinal base loss in the Gulf toadfish (Opsanus beta). Physiol. Biochem. Zool. 85, 450459. CrossRefGoogle Scholar
Higgs, D.A., Markert, J.R., Plotnikoff, M.D., McBride, J.R., Dosanjh, B.S., 1985, Development of nutritional and environmental strategies for maximazing the growth and survival of juveniles of pink Salmon (Onccorhyncus gorbuscha). Aquaculture 47, 113130. CrossRefGoogle Scholar
Horne, M.T., Baxendale, A., 1983, The adhesion of Vibrio anguillarum to host tissue and its role in pathogenesis. J. Fish Dis. 6, 461471. CrossRefGoogle Scholar
Hughes, S.G., Barrows, R., 1990, Measurements of the abilities of cultured fishes to moisturize their digesta. Comp. Biochem. Physiol. A 96, 109111. CrossRefGoogle Scholar
Jobling, M., 1986, Gastrointestinal overload – A problem with formuleted feeds. Aquaculture 51, 257263. CrossRefGoogle Scholar
Kaiser, H., Brill, G., Cahill, J., Collett, P., Czypionka, K., Green, A., Orr, K., Pattrick, P., Scheepers, R., Stonier, T., Whitehead, M.A., Yearsley, R., 2006, Testing clove oil as an anaesthetic for long-distance transport of live fish: the case of the Lake Victoria cichlid Haplochromis obliquidens. J. Appl. Ichthyol. 22, 510514. CrossRefGoogle Scholar
Kaushik, S.J., Coves, D., Dutto, G., Blanc, D., 2004, Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230, 391404. CrossRefGoogle Scholar
Kristiansen, H.R., Rankin, J.C., 2001, Discrimination between endogenous and exogenous water sources in juvenile rainbow trout fed extruded dry feed. Aquat. Living Resour. 14, 359366. CrossRefGoogle Scholar
Lee, S.M., Hwang, U.G., Cho, S.H., 2000, Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture 187, 399409. CrossRefGoogle Scholar
Mladineo, I., Bocina, I., Przybyla, C., Fievet, J., Blancheton, J.P., 2010, Fish growth and health aspects of sea bass (Dicentrarchus labrax) reared in standard vs. high rate algal pond recirculation systems. Aquat. Living Resour. 23, 217224. CrossRefGoogle Scholar
Mouchet, M.A., Bouvier, C., Bouvier, T., Troussellier, M., Escalas, A., Mouillo, D., 2012, Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints. FEMS Microbiol. Ecol. 79, 568580. CrossRefGoogle ScholarPubMed
Nikolopoulou, D., Moutou, K.A., Fountoulaki, E., Venou, B., Adamidou, S., Alexis, M.N., 2011, Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comp. Biochem. Physiol. A-Molecular Integrative Physiology 158, 406414. CrossRefGoogle Scholar
Oehme, M., Aas, T.S., Olsen, H.J., Sorensen, M., Hillestad, M., Li, Y., Asgard, T., 2014, Effects of dietary moisture content of extruded diets on physical feed quality and nutritional response in Atlantic salmon (Salmo salar). Aquac. Nutr. 20, 451465. CrossRefGoogle Scholar
Olsson, J.C., Westerdahl, A., Conway, P.L., Kjelleberg, S., 1992, Intestinal colonization potential of turbot (Scophthalmus maximus) and dab (Limanda limanda) associated bacteria with inhibitory effect against Vibrio anguillarum. Appl. Environ. Microbiol. 58, 551556. Google ScholarPubMed
Papadakis, I.E., Chatzifotis, S., Divanach, P., Kentouri, M., 2008, Weaning of greater amberjack (Seriola dumerilii Risso,1810) juveniles from moist to dry pellet. Aquac. Int. 16, 1325. CrossRefGoogle Scholar
Person-Le Ruyet, J., Mahe, K., Le Bayon, N., Le Delliou, H., 2004, Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237, 269280. CrossRefGoogle Scholar
Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux, A., Boeuf, G., 2001, Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol. 59, 875883. CrossRefGoogle Scholar
Quinton R., 1912, L’eau de mer, milieu organique. Masson & Cie. Editeurs, Paris.
Rana K., Siriwardena S., Hassan M., 2009, Impact of rising feed ingredient price on aquafeeds and aquaculture production. Fisheries and aquaculture FAO Tech. Pap.
Ruohonen, K., Grove, D.J., McIlroy, J.T., 1997, The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets. J. Fish Biol. 51, 93105. CrossRefGoogle Scholar
Ruohonen, K., Vielma, J., Grove, D.J., 1998a, Comparison of nutrient losses into the water from rainbow trout culture based on fresh Baltic herring, moist and dry diets. Aquac. Int. 6, 441450. CrossRefGoogle Scholar
Ruohonen, K., Vielma, J., Grove, D.J., 1998b, High dietary inclusion level of fresh herring impairs growth of rainbow trout, Oncorhynchus mykiss. Aquaculture. 163, 263273. CrossRefGoogle Scholar
Sammouth, S., d’Orbcastel, E.R., Gasset, E., Lemarie, G., Breuil, G., Marino, G., Coeurdacier, J.L., Fivelstad, S., Blancheton, J.P., 2009, The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system. Aquac. Eng. 40, 7278. CrossRefGoogle Scholar
Schneider O., van der Heul J., Schram E., Schrama J., Sæther B.S., 2009, Increased moisture of pelleted dry diets improves sole growth, New research frontiers – novel approaches for evolving needs, Trondheim, 14–17 August 2009.
Solorzano, L., 1969, Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799801. Google Scholar
Spanggaard, B., Huber, I., Nielsen, J., Sick, E.B., Pipper, C.B., Martinussen, T., Slierendrecht, W.J., Gram, L., 2001, The probiotic potential against vibriosis of the indigenous microflora of rainbow trout. Environ. Microbiol. 3, 755765. CrossRefGoogle ScholarPubMed
Svendsen, Y.S., Bogwald, J., 1997, Influence of artificial wound and non-intact mucus layer on mortality of Atlantic salmon (Salmo salar L.) following a bath challenge with Vibrio anguillarum and Aeromonas salmonicida. Fish Shellfish Immunol. 7, 317325. CrossRefGoogle Scholar
Tytler, P., Tatner, M., Findlay, C., 1990, The ontogeny of drinking in the rainbow trout, Onchorhynchus mykiss (Walbaum). J. Fish Biol. 36, 867875. CrossRefGoogle Scholar
Van Ham, E.H., Berntssen, M.H.G., Imsland, A.K., Parpoura, A.C., Bonga, S.E.W., Stefansson, S.O., 2003, The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture 217, 547558. CrossRefGoogle Scholar
Varsamos, S., Bonga, S.E.W., Charmantier, G., Flik, C., 2004, Drinking and Na+/K+ ATPase activity during early development of European sea bass, Dicentrarchus labrax – Ontogeny and short-term regulation following acute salinity changes. J. Exp. Mar. Biol. Ecol. 311, 189200. CrossRefGoogle Scholar
Volpatti, D., Bulfon, C., Tulli, F., Galeotti, M., 2013, Growth parameters, innate immune response and resistance to Listonella (Vibrio) anguillarum of Dicentrarchus labrax fed carvacrol supplemented diets. Aquac. Res. 45, 3144. CrossRefGoogle Scholar
Westerdahl, A., Olsson, J.C., Kjelleberg, S., Conway, P.L., 1991, Isolation and characterization of turbot (Scophthalmus maximus) associated bateria with inhibitory effects against Vibrio anguillarum. Appl. Environ. Microbiol. 57, 22232228. Google Scholar
Westerdahl, A., Olsson, J.C., Conway, P.L., Kjelleberg, S., 1994, Characterization of turbot (Scophthalmus maximus) associated bacteria with inhibitory effects against the fish pathogen Vibrio anguillarum. Acta Microbiol. Immunol. Hung. 41, 403409. Google ScholarPubMed
Whittamore, J.M., 2012, Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J. Comp. Physiol. B-Biochem. Syst. Environm. Physiol. 182, 139. CrossRefGoogle ScholarPubMed
Wong, S., Waldrop, T., Summerfelt, S., Davidson, J., Barrows, F., Kenney, P.B., Welch, T., Wiens, G.D., Snekvik, K., Rawls, J.F., Good, C., 2013, Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl. Environ. Microbiol. 79, 49744984. CrossRefGoogle ScholarPubMed
Wood, E.D., Armstrong, F.A.J., Richards, F.A., 1967, Determination of nitrate in sea water by 120cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. UK 47, 2331. CrossRefGoogle Scholar