Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T03:20:34.543Z Has data issue: false hasContentIssue false

Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 4- Thermal biology of embryos and larvae

Published online by Cambridge University Press:  06 July 2012

Etienne Baras*
Affiliation:
IRD, UMR 226 – ISEM, 34196 Montpellier Cedex 05, France
Rendy Ginanjar
Affiliation:
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), jl. Perikanan No. 13, 41152 Depok, Indonesia
Musa Ahmad
Affiliation:
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), jl. Perikanan No. 13, 41152 Depok, Indonesia
Asep Permana
Affiliation:
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), jl. Perikanan No. 13, 41152 Depok, Indonesia
Agus Priyadi
Affiliation:
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), jl. Perikanan No. 13, 41152 Depok, Indonesia
Marc Legendre
Affiliation:
IRD, UMR 226 – ISEM, 34196 Montpellier Cedex 05, France
Laurent Pouyaud
Affiliation:
IRD, UMR 226 – ISEM, 34196 Montpellier Cedex 05, France
Jacques Slembrouck
Affiliation:
IRD, UMR 226 – ISEM, 34196 Montpellier Cedex 05, France Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), jl. Perikanan No. 13, 41152 Depok, Indonesia
*
a Corresponding author : [email protected]
Get access

Abstract

The knowledge of how fish survive and grow at different temperatures, and how these traits vary between life stages, is essential to evaluate the effects of climate change on wild fish and implement effective strategies in aquaculture. These issues are addressed in this study through a series of experiments that evaluate the effect of temperature (23–34 °C) on the embryos and larvae of clown loach, Chromobotia macracanthus. This species is endemic to the rivers of Sumatra and Borneo, highly praised on the ornamental fish market, and has been reproduced in captivity recently. No embryo survived a 24-h exposure to 34 °C until the age of 3 days after hatching (dah); mortality was high at 32 °C at 2 and 3 dah, whereas it was low and similar from 1 to 4 dah at 23–29 °C (<10%). Yolk absorption was proportional to water temperature (Q10°C of 1.69 in the 23–32 °C range), but fish reared at cold temperatures were larger than others at the start of exogenous feeding (5.7 vs. 5.5 mm TL, at 23 and 32 °C, respectively). The survival of larvae fed Artemia nauplii ad libitum was high at 23–32 °C (80–100%), but almost null at 34 °C. Growth models at different temperatures were produced from weekly measurements in two experiments, and tested by comparing their predictions with the results of a third experiment. Throughout the larval stage, the optimal temperature for growth (T°opt) was close to 29 °C, and departures from T°opt resulted in substantial growth penalties (–30% SGR for –5.1 °C and  + 3.1 °C). High survival, fast growth (0.7 mm day-1) and limited size dispersal at T°opt are encouraging perspectives for the aquaculture of clown loach. From an ecological perspective, the species has an atypical thermal biology, as it is less thermophilic than other tropical fishes, but more stenothermal than temperate fishes exhibiting similar values of T°opt , both traits being of particular concern in the context of global warming.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arul, V., 1991, Effect of temperature on yolk utilization of Channa striatus. J. Therm. Biol. 16, 15. CrossRefGoogle Scholar
Azaza, M.S., Dhraief, M.N., Kraiem, M.M., 2008, Effects of water temperature on growth and sex ratio of Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. J. Therm. Biol. 33, 98105. CrossRefGoogle Scholar
Baras E., Florès E.F., 2006, Interacciones entre la temperatura, el tamaño, el crecimiento y la homogeneidad de tamaño en las larvas y juveniles del paco Piaractus brachypomus. In : Renno J.-F., Garcia Davilla C., Duponchelle F., Nuñez J. (Eds.), Biología de las Poblaciones de Peces de la Amazonía y Piscicultura. Paris (France), Iquitos (Perú). IRD-IIAP edn., pp. 192–198.
Baras, E., Jobling, M., 2002, Dynamics of intracohort cannibalism in cultured fishes. Aquac. Res. 33, 461479. CrossRefGoogle Scholar
Baras, E., Mpo′N′Tcha, A., Driouch, H., Prignon, Ch., Mélard, C., 2002, Ontogenetic variations of thermal optimum for growth, and its implication on thermolabile sex determination in blue tilapia. J. Fish Biol. 61, 645660. CrossRefGoogle Scholar
Baras, E., Raynaud, T., Slembrouck, J., Caruso, D., Cochet, C., Legendre, M., 2011, Interactions between temperature and size on the growth, size heterogeneity, mortality and cannibalism in cultured larvae and juveniles of the Asian catfish, Pangasianodon hypophthalmus (Sauvage). Aquac. Res. 42, 260276. CrossRefGoogle Scholar
Baras, E., Slembrouck, J., Priyadi, A., Satyani, D., Pouyaud, L., Legendre, M., 2012, Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 3-Ontogeny, ecological and aquacultural implications. Aquat. Living Resour. 25, 119130. CrossRefGoogle Scholar
Baynes, S.M., Howell,, B.R., 1996, The influence of egg size and incubation temperature on the condition of Solea solea (L.) larvae at hatching and first feeding. J. Exp. Mar. Biol. Ecol. 199, 5977. Google Scholar
Blaxter, J.H.S., Hempel, G., 1963, The influence of egg size on herring larvae (Clupea harengus L.). J. Cons. Internat. Explor. Mer. 28, 211240. CrossRefGoogle Scholar
Britz, P.J., Hecht, T., 1987, Temperature preferences and optimum temperature for growth of African sharptooth catfish (Clarias gariepinus) larvae and post-larvae. Aquaculture 63, 205214. CrossRefGoogle Scholar
Das, T., Pal, A.K., Chakraborty, S.K., Manush, S.M., Sahu, N.P., Mukherjee, S.C., 2005, Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton 1822) acclimated to four temperatures. J. Therm. Biol. 30, 378383. CrossRefGoogle Scholar
de Assis, J.M.F., Carvalho, R.F., Barbosa, L., Agostinho, C.A., Pai-Silva, M.D., 2004, Effects of incubation temperature on muscle morphology and growth in the pacu (Piaractus mesopotamicus). Aquaculture 237, 251267. CrossRefGoogle Scholar
Dou, S.Z., Masuda, R., Tanaka, M., Tsukamoto, K., 2005, Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J. Fish Biol. 66, 362377. CrossRefGoogle Scholar
Elliott, J.M., Elliott, J.A., 2010, Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus : predicting the effects of climate change. J. Fish Biol. 77, 17931817. CrossRefGoogle ScholarPubMed
Elliott, J.M., Hurley, M.A., 1999, A new energetics model for brown trout, Salmo trutta. Freshw. Biol. 42, 235246. CrossRefGoogle Scholar
Elliott, J.M., Hurley, M.A., 2000, Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshw. Biol. 44, 237245. CrossRefGoogle Scholar
Elliott, J.M., Hurley, M.A., Allonby, J.D., 1996, A functional model for maximum growth of immature stone loach, Barbatula barbatula, from three populations in north-west England. Freshw. Biol. 36, 547554. CrossRefGoogle Scholar
Fry F.E.J., 1971, The effects of environmental factors on the physiology of fish. In : Hoar W.S., Randall D.J. (Eds.), Fish Physiology, Vol. 6, New York, Academic Press, pp. 1–98.
Goolish, E.M., Adelman, I.R., 1984, Effects of ration size and temperature on the growth of juvenile common carp (Cyprinus carpio L.). Aquaculture 36, 2735. CrossRefGoogle Scholar
Gracia-López, V., Kiewek-Maetínez, M., Maldonado-Garcia, M., 2004, Effect of temperature and salinity on artificially reproduced eggs and larvae of the leopard grouper Myctoperca rosacea. Aquaculture 237, 485498. CrossRefGoogle Scholar
Hardy, R.S., Litvak, M.K., 2004, Effects of temperature on the early development, growth and survival of shortnose sturgeon, Acipenser brevirostrum, and Atlantic sturgeon, Acipenser oxyrhynchus, yolk-sac larvae. Environ. Biol. Fishes 70, 145154. CrossRefGoogle Scholar
Hecht, T., Pienaar, A.G., 1993, A review of cannibalism and its implication in fish larviculture. J. World Aquac. Soc. 24, 246261. CrossRefGoogle Scholar
Hogendoorn, H., Jansen, J.A.J., Koops, W.J., Machiels, M.A.M., Ewijk, P.H. van, Hess, J.P. van, 1983, Growth and production of the African catfish, Clarias lazera (C & V). II. Effects of body weight, temperature and feeding level in intensive tank culture. Aquaculture 34, 265285. CrossRefGoogle Scholar
Howell, W.H., Caldwell, A.M., 1984, Influence of temperature on energy utilization and growth of embryonic and prolarval American plaice, Hippoglossoides platessoides (Fabricius). J. Exp. Mar. Biol. Ecol. 79, 173189. CrossRefGoogle Scholar
Jobling M., 1994, Fish Bioenergetics, London, Chapman and Hall.
Johnston, I.A., Cole, N.J., Abercromby, M., Vieira, V.L.A., 1998, Embryonic temperature modulates muscle growth characteristics in larval and juvenile herring. J. Exp. Biol. 201, 623646. Google ScholarPubMed
Kaminski, R., Kamler, E., Korwin-Kossakowski, M., Myszkowski, L., Wolnichi, J., 2006, Effects of different incubation temperatures on the yolk-feeding stage of Eupallasella percnurus (Pallas). J. Fish Biol. 68, 10771090. CrossRefGoogle Scholar
Kamler E., 1992, Early Life History of Fish : An Energetics Approach. London : Chapman and Hall, 267 p.
Kamler, E., 2002, Ontogeny of yolk-feeding fish : an ecological perspective. Rev. Fish Biol. Fish. 12, 79103. CrossRefGoogle Scholar
Kamler, E., Keckeis, H., Bauer-Nemeschkal, E., 1998, Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. J. Fish Biol. 53, 658682. Google Scholar
Katersky, R.S., Carter, C.G., 2007, High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet. Aquaculture 272, 444450. CrossRefGoogle Scholar
Keckeis, H., Kamler, E., Bauer-Nemeschkal, E., Schneeweiss, K., 2001, Survival, development, and food energy partitioning of nase larvae and early juveniles at different temperatures. J. Fish Biol. 59, 4561. CrossRefGoogle Scholar
Kestemont, P., 1995, Influence of feed supply, temperature and body size on the growth of goldfish Carassius auratus larvae. Aquaculture 136, 341349. CrossRefGoogle Scholar
Kitchell, J.F., Stewart, D.J., Weininger, D., 1977, Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board Can. 34, 19221935. CrossRefGoogle Scholar
Koskela, J., Pirhonen, J., Jobling, M., 1997, Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquac. Internat. 5, 351360. CrossRefGoogle Scholar
Legendre, M., Satyani, D., Subandiyah, S., Sudarto, Pouyaud, L., Baras, E., Slembrouck, J., 2012, Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 1- Hormonal induced breeding, unusual latency response and egg production in two populations from Sumatra and Borneo Islands. Aquat. Living Resour. 25, 95108. CrossRefGoogle Scholar
Martell, D.J., Kieffer, J.D., Trippel, E.A., 2005, Effects of temperature during early life history on embryonic and larval development and growth in haddock. J. Fish Biol. 66, 15581575. CrossRefGoogle Scholar
Martínez-Palacios, C., Barriga Tovar, E., Taylor, J.F., Ríos Durán, G., Ross, L.G., 2002, Effect of temperature on growth and survival of Chirostoma estor estor (Jordan 1879), monitored using a simple video technique for remote measurement of length and mass of larval and juvenile fishes. Aquaculture 209, 369377. CrossRefGoogle Scholar
May, R.C., 1974, Effects of temperature and salinity on yolk utilization in Bairdiellea icistia (Jordan & Glibert) (Pisces : Sciaenidae). J. Exp. Mar. Biol. Ecol. 16, 213225. CrossRefGoogle Scholar
Ng, P.K.L., Tan, H.H., 1997, Freshwater fishes of Southeast Asia : potential for the aquarium fish trade and conservation issues. Aquar. Sci. Conserv. 1, 7990. CrossRefGoogle Scholar
Nwosu, F.M., Holzlöhner, S., 2000, Influence of temperature on egg hatching, growth and survival of Heterobranchus longifilis Val., 1840 (Teleostei : Clariidae). J. Appl. Ichthyol. 16, 2023. CrossRefGoogle Scholar
Overnell, J., 1997, Temperature and efficiency of development during endogenous feeding in herring embryos and yolk-sac larvae. J. Fish Biol. 50, 358365. CrossRefGoogle Scholar
Pepin, P., 1991, Effect of temperature and size on development, mortality and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503518. CrossRefGoogle Scholar
Planas, M., Cunha, I., 1999, Larviculture of marine fish : problems and perspectives. Aquaculture 177, 171190. CrossRefGoogle Scholar
Polo, A., Yúfera, M., Pascual, E., 1991, Effects of temperature on egg and larval development of Sparus aurata L. Aquaculture 92, 367375. CrossRefGoogle Scholar
Pörtner, H.O., Peck, M.A., 2010, Climate change effects on fishes and fisheries : towards a cause-and-effect understanding. J. Fish Biol. 77, 17451779. CrossRefGoogle Scholar
Qin, J., He, X., Fast, A.W., 1997, A bioenergetics model for an air-breathing fish, Channa striatus. Environ. Biol. Fishes 50, 309318. CrossRefGoogle Scholar
Rana, K.J., 1990, Influence of incubation temperature on Oreochromis niloticus (L.) eggs and fry : II. Survival, growth and feeding of fry developing solely on their yolk reserves. Aquaculture 87, 183195. CrossRefGoogle Scholar
Rijnsdorp, A., Peck, M.A., Engelhard, G.H., Mollmann, C., Pinnegar, J.K., 2009, Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66, 15701583. CrossRefGoogle Scholar
Santerre, M.T., 1976, Effects of temperature and salinity on the eggs and early larvae of Caranx mate (Cuv & Valenc.) (Pisces : Carangidae) in Hawaii.. J. Exp. Mar. Biol. Ecol. 21, 5168. CrossRefGoogle Scholar
Shoki, J., Aoyama, M., Fujimoto, H., Iwamoto, A., Tanaka, M., 2002, Susceptibility to starvation by piscivorous Japanese Spanish mackerel Scomberomorus niphonius (Scombridae) larvae at first feeding. Fish. Sci. 68, 5964. CrossRefGoogle Scholar
J., Slembrouck, A., Priyadi, A., Permana, R., Ginanjar, E., Baras, D., Satyani, Sudarto, Pouyaud, L., Legendre, M., 2012, Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 2-Importance of water movement and temperature during egg incubation. Aquat. Living Resour. 25, 109118. Google Scholar
Steinarsson, A., Björnsson, B., 1999, The effects of temperature and size on growth and mortality of cod larvae. J. Fish Biol. 55 (Suppl. 1), 100109. CrossRefGoogle Scholar
Sun, L., Chen, H., 2009, Effects of ration and temperature on growth, fecal production, nitrogenous excretion and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture 292, 197206. CrossRefGoogle Scholar
Teletchea, F., Fontaine, P., 2010, Comparison of early life-stage strategies in temperate freshwater fish species : trade-offs are directed towards first feeding in spring and early summer. J. Fish Biol. 77, 257278. CrossRefGoogle Scholar
Watanabe, W.O., Ernst, D.H., Chasar, M.P., Wichlund, R.I., Olla, B.L., 1993, The effects of temperature and salinity on growth and feed utilization of juvenile, sex-reversed male Florida red tilapia cultured in a recirculating system. Aquaculture 112, 309320. CrossRefGoogle Scholar
W.O, Watanabe, Lee, C.-S., Ellis, S.C., Ellis, E.P., 1996, Hatchery study of the effects of temperature on eggs and yolksac larvae of the Nassau grouper Epinephelus striatus. Aquaculture 136, 141147. Google Scholar
Wuenschel, M.J., Jugovich, A.R., Hare, J.A., 2004, Effect of temperature and salinity on the energetics of juvenile gray snapper (Lutjanus griseus) : implications for nursery habitat value. J. Exp. Mar. Biol. Ecol. 312, 333347. CrossRefGoogle Scholar
Yin, M.C., Blaxter, J.H.S., 1987, Feeding availability and survival during starvation of marine larvae reared in the laboratory. J. Exp. Mar. Biol. Ecol. 105, 7383. CrossRefGoogle Scholar
Yoseda, K., Dan, S., Sugaya, T., Yokogi, K., Tanaka, M., Tawada, S., 2006, Effects of temperature and delayed initial feeding on the growth of Malabar grouper (Epinephelus malabaricus) larvae. Aquaculture 256, 192200. CrossRefGoogle Scholar
Yúfera, M., Darias, M.J., 2007, The onset of exogenous feeding in marine fish larvae. Aquaculture 268, 5363. CrossRefGoogle Scholar
Zhang, L., Wang, Y.J., Hu, M.H., Fan, Q.X., Cheung, S.G., Shin, P.K.S., Li, H., Cao, K., 2009, Effects of the timing of initial feeding on growth and survival of spotted mandarin fish Siniperca scherzeri larvae. J. Fish Biol. 75, 11581172. CrossRefGoogle ScholarPubMed