Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T09:11:18.047Z Has data issue: false hasContentIssue false

The multi-use in wind farm projects: more conflicts or a win-win opportunity?

Published online by Cambridge University Press:  05 August 2011

Denis Lacroix*
Affiliation:
IFREMER, DS, av. Jean Monnet, BP 171, 34203 Sète Cedex, France
Sylvain Pioch
Affiliation:
Egis Eau, 78 allée John Napier, 34965 Montpellier Cedex 2, France Dep. Biologie-Ecologie-Environnement, UMR 5175 CEFE, Université Paul Valéry, Montpellier III, route de Mende, 34199 Montpellier Cedex 5, France
*
a Corresponding author: [email protected]
Get access

Abstract

The pressures on the use of the seashore are steadily rising, not only in developed countries but worldwide. Anthropogenic activity has long impacted the marine continental shelf down to a depth of approximately –200 m. New activities are now affecting this coastal space such as renewable energies, recreational uses and aquaculture in addition to the traditional ones of navigation or fishing. This evolution raises new sources of conflict amongst users which can require state involvement in order to manage the different stakeholders and pressure groups. However, the coastal space still offers a large potential for development for two reasons. Firstly, the physical three dimensional potential of this space enables the whole water column to be used, principally to increase the fishing productivity as in Japan. Secondly, innovative synergies can be created between socio-technical and ecological uses (a “fourth dimension”) such as the eco-design of wind turbine foundations in order to create fish habitat or sea grass settlement. This new vision in “4D” for the design and the management of coastal infrastructure can potentially reduce the risk of conflict as different uses of the coastal space would not necessarily exclude one another. Indeed, several forms of synergy could be developed such as fisheries with aquaculture or biological sustainability with social acceptability. Until now, limited attempts at such an approach have been done. We suggest this is likely due to the absence of a common eco-engineering vision and the lack of experience amongst biologists and engineers in the co-construction of projects. This eco-engineering, or “green” vision, also takes into account the complexity and resilience of the ecosystem in the long term, if underwater engineered infrastructures are also “eco”-designed to increase ecological gain This new conception, for development within the coastal area, provides for an increased bio-oriented complexity to engineered structure and therefore a better resistance of the ecosystem in the long term to anthropogenic pressures and a reduction in multi-user conflicts.

Type
Perspectives
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baine, M., 2001, Artificial reefs: a review of their design, application, management and performance. Ocean Coast. Manage. 44, 241259. CrossRefGoogle Scholar
Benoit G., Comeau A. (dir.), 2005, A sustainable future for the Mediterranean. The Blue Plan’s environment and development outlook. Earthscan, Taylor & Francis Group – Edn. de l’Aube & Plan Bleu, Le Seuil, Paris.
Blondel J., Aronson J., Bodiou J.Y., Bœuf G., 2010, The Mediterranean region: biological diversity in space and time. 2nd edn., Oxford University Press.
Bœuf G., 2008, Quel avenir pour la biodiversité ? In: Changeux J.P., Reisse J. (Eds.). Un monde meilleur pour tous : projet réaliste ou rêve insensé ? Collège de France/Odile Jacob, Paris, pp. 47–98.
Bombace, G., Fabi, G., Fiorentini, L., Speranza, S., 1994, Analysis of the efficacy of artificial reefs located in five different areas of the Adriatic sea. Bull. Mar. Sci. 55, 559580. Google Scholar
Bortone, S.A., 2006, A perspective of artificial reef research, the past, the present and the future. Bull. Mar. Sci. 78, 18. Google Scholar
Breukers, S., Wolsink, M., 2007, Wind power implementation in changing institutional landscapes: an international comparison. Energy Policy 35, 27372750. CrossRefGoogle Scholar
Buck, B.H., Krause, G., Michler-Cieluch, T., Rosenthal, H., 2004, Extensive open ocean aquaculture development within wind farm in Germany: the project of offshore co-management and legal constraints. Ocean Coast. Manage. 47, 95122. CrossRefGoogle Scholar
Buck, B.H., Krause, G., Michler-Cieluch, T., 2010, Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgol. Mar. Res. 62, 269281. CrossRefGoogle Scholar
Bulleri, F., Chapman, M.G., 2010, The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 47, 2635. CrossRefGoogle Scholar
Burt, J., Bartholomew, A., Bauman, A., Saif, A., Sale, P.F., 2009, Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters. J. Exp. Mar. Biol. Ecol. 373, 7278. CrossRefGoogle Scholar
Callon M., Lascoumes P., Barthes Y., 2001, La controverse comme apprentissage et traduction. In: Agir dans un monde incertain. Essai sur la démocratie technique. Coll. La couleur des idées, Le Seuil, Paris.
Charbonnel, E., Serre, C., Ruitton, S., Harmelin, J.G., Jensen, A., 2002, Effects of increased habitat complexity on fish assemblages associated with large artificial reefs units. 7th Int. Conference on artificial reefs and related habitats. Oct. 1999, San Remo, Italy. ICES J. Mar. Sci. 59, S208S213. CrossRefGoogle Scholar
Cornish E., 2004, Futuring: the exploration of the future. Bethesda MD, World Future Society.
Costa-Pierce, B.A., 2010, Sustainable ecological aquaculture systems: the needs for a new social contract for aquaculture development. Mar. Technol. Soc. J. 44, 88112. CrossRefGoogle Scholar
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neil, R.V., Raskin, R.G., Sutton, P., van den Belt, M., 1997, The value of world’s ecosystem services and natural capital. Nature 387, 253260. CrossRefGoogle Scholar
Crossett K.M., Culliton T.J., Wiley P.C., Goodspeed T.R., 2004, Population trends along the coastal United States: 1980,-2008. US Dep. Commerce, NOAA, National Ocean Service. http://www.oceanservice.noaa.gov/programs/mb/pdfs/coastal_pop_trends_complete.pdf
Cury P., Miserey Y., 2008, Une mer sans poissons. Calmann-Lévy, Paris.
Falkowsky, P.G., Barber, R.T., Smetacek, V., 1998, Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200206. CrossRefGoogle Scholar
FAO-NACA, 2001, Aquaculture in the third Millennium. In: Subasinghe R.P., Bueno P.B., Phillips M.J., Hough C., McGladdery S.E., Arthur J.R. (Eds.). Proc. Aquaculture in the third Millenium, Bangkok, Thailand, 20-25 Feb. 2000, http://www.fao.org/DOCREP/003/AB412E/AB412E00.HTM.
FAO, 2011, The state of world fisheries and aquaculture 2010, FAO Reports, Rome.
Forst, M.F., 2009, The convergence of Integrated Coastal Zone Management and the ecosystem approach. Ocean Coast. Manage. 52, 294306. CrossRefGoogle Scholar
Grossman, G.D., Jones, G.P., Seaman, W.J., 1997, Do artificial reefs increase regional fish production? A review of existing data. Fisheries 22, 1723. 2.0.CO;2>CrossRefGoogle Scholar
Grove, R.S., Sonu, C.J., Nakamura, M., 1989, Recent Japanese trends in fishing reef design and planning. Bull. Mar. Sci. 44, 984996. Google Scholar
Gunderson L.H., Holling C.S., 2002, Panarchy: understanding transformations in human and natural systems. Washington DC, Island Press.
Inger, R., Attrill, M.J., Bearshop, S., Broderick, A.C., Grecian, W.J., Hodgson, D.J., Mills, C., Sheehan, E., Votier, S.C., Witt, M.J., Godley, B.J., 2009, Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 46, 11451153. Google Scholar
Jackson, J.B.C., Kirby, M.X., Berger, W.H., Bjorndal, K.A. et al., 2001, Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629638. CrossRefGoogle ScholarPubMed
Jamieson D., 2005, Adaptation, mitigation and justice. In: Sinnott-Armstrong W., Howarth R.B. (Eds.). Perspectives on climate change: science, economics, politics, ethics. Oxford, Elsevier, pp. 217–248.
Jensen A.C., Collins K.J., Lockwood A.P.M. (Eds.), 2000, Artificial reefs in European seas. Dortrecht, Kluwer.
Kavanagh, E., 2007, Biodiversity loss in the ocean: how bad is it? Science 316, 12811285. Google Scholar
Koike Y., 2001, Artificial reef for lobster in Tateyama station, Banda. Jpn Soc. Fish. Sci. 61.
Lacroix D., Paillard M., 2008, Energies renouvelables marines: synthèse d’une étude prospective à l’horizon 2030. Futuribles 345.
Langhamer, O., Wilhelmsson, D., 2009, Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes – A field experiment. Mar. Environ. Res. 68, 151157. CrossRefGoogle Scholar
Lapena, B.P., Wijnberg, K.M., Hulscher, S.J.M.H., 2010, Environmental impact assessment of offshore wind farms: a simulation-based approach. J. Appl. Ecol. 47, 11101118. CrossRefGoogle Scholar
Lindquest, D.G., Pietrafesa, L.J., 1989, Current vortices and fish aggregations: the current field and associated fishes around a tugboat in Onslow Bay, North Carolina. Bull. Mar. Sci. 44, 533544. Google Scholar
Marumaya, Y., Nishikido, M., Tetsunari, I., 2007, The rise of community wind power in Japan: Enhanced acceptance through social innovation. Energy Policy 35, 27612769. CrossRefGoogle Scholar
Mermet L. (dir.), 2005, Etudier des écologies futures : un chantier ouvert pour les recherches prospectives environnementales. PIE Peter Lang, EcoPolis 5.
Michler-Cieluch, T., Krause, G., Buck, B.H., 2009a, Marine aquaculture within offshore wind farms: Social aspects of multiple-use planning. Gaia Ecol. Perspect. Sci. Soc. 18, 158162. Google Scholar
Michler-Cieluch, T., Krause, G., Buck, B.H., 2009b, Reflections on integrating operation and maintenance activities of offshore wind farms and mariculture. Ocean Coast. Manage. 52, 1768. CrossRefGoogle Scholar
Monteiro C., Santos M., 2000, Portuguese artificial reefs. Artificial reefs in European seas. In: Jensen A.C. (Eds). Kluwer, pp. 249–261.
Nakamura, M., 1985, Evolution of artificial fishing reefs concepts in Japan. Bull. Mar. Sci. 37, 271278. Google Scholar
Pahl-Wostl, C., Mostertet, E., Tabara, D., 2008, The growing importance of social learning in water resources management and sustainability. Ecol. Soc. 13, 24. CrossRefGoogle Scholar
Pastor J., 2008, Rôle des enrochements côtiers artificiels dans la connectivité des populations, cas du sar commun (Diplodus sargus Linné, 1758) en Méditerranée nord-occidentale. Thèse dr. Univ. Perpignan/École Pratique des Hautes Études.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F., 1998, Fishing down marine food webs. Science 279, 860863. CrossRefGoogle ScholarPubMed
Pauly, D., Watson, R., 2005, Background and interpretation of the marine trophic index as a measure of biodiversity. Biol. Sci. 360, 415423. CrossRefGoogle ScholarPubMed
Petersen, J.K., Malm, T., 2006, Offshore windmill farms: threats to or possibilities for the marine environment. Ambio 35, 7580. CrossRefGoogle ScholarPubMed
Pioch S., 2008, Les habitats artificiels: éléments de stratégie pour une gestion intégrée des zones côtières. Essai de méthodologie d’aménagement en récifs artificiels adaptés à la pêche artisanale côtière. PhD thesis, Paul Valéry Univ. Montpellier-Tokyo University of marine science and technology.
Pioch S., Kilfoyle K., Levrel H., Spieler R. (in press), Green marine construction. Proc. 3rd Int. Conference on Management of coastal recreational resources, Grosseto, Italy, Oct. 27–30, 2010.
Pioch S., Raynal J.C., Lasserre G., 2011, The artificial habitat, an evolutionary strategic tool for integrated coastal area management. In Ceccaldi H.J., Dekeyser I., Girault M., Stora G. (Eds.). Global change: mankind-marine environment interactions, Proc. 13th French-Japanese Oceanography Symposium, Marseille Sept. 2008. Springer, pp. 129–134.
Punt, M.J., Groeneveld, R.A., van Ierland, E.C., 2009, Spatial planning of offshore wind farms: A windfall to marine environmental protection? Ecol. Econ. 69, 93103. CrossRefGoogle Scholar
Queffelec, B., Cummins, V., Bailly, D., 2009, Integrated management of marine biodiversity in Europe: Perspectives from ICZM and the evolving EU Maritime policy framework. Mar. Policy 33, 871877. CrossRefGoogle Scholar
Santos, M.N., Monteiro, C.C., 2007, A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (Southern Portugal). Hydrobiologia 580, 225231. CrossRefGoogle Scholar
Saunier C., Laffitte P., 2007, L’apport de la science et de la technologie au développement durable ; la biodiversité : l’autre choc ? L’autre chance ? Rapport de l’OPECST, Assemblée nationale, Paris.
Schwartz P., 1991, The art of long view: planning for the future in an uncertain world. John Wiley & Sons.
Seaman, W., 2007, Artificial habitats and the restoration of degraded marine ecosystems. Hydrobiologia 580, 143155. CrossRefGoogle Scholar
Thanner, S.E., McIntosh, T.L., Blair, S.M., 2006, Development of benthic and fish assemblages on artificial reef materials compared to adjacent natural reef assemblages in Miami, Dade County, Florida. Bull. Mar. Sci. 78, 5770. Google Scholar
van der Heijden K., 1996, Scenarios: the art of strategic conversation. J. Wiley & sons Ltd, Chichester, UK.
Wilhelmsson D., Yahya S., Ohman M., 2006, Effects of high relief structures on cold temperate fish assemblages: a field experiment. Mar. Biol. Res. 136–147.
Wilhelmsson, D., Malm, T., 2008, Fouling assemblages on offshore wind power plants and adjacent substrata. Estuar. Coast. Shelf Sci. 79, 459466. CrossRefGoogle Scholar
Wolsink, M., 2005, Wind power implementation: The nature of public attitudes: Equity and fairness instead of “backyard motives”. Renew. Sustain. Energy Rev. 11, 11881207. CrossRefGoogle Scholar
Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E. et al., 2006, Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787790. CrossRefGoogle ScholarPubMed