Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T03:48:42.544Z Has data issue: false hasContentIssue false

Isolation and characterization of polymorphic microsatellite loci in black sea bream (Acanthopagrus schlegeli ) by cross-species amplification with six species of the Sparidae family

Published online by Cambridge University Press:  27 October 2007

Yun-Guo Liu
Affiliation:
Division of Life Science and Technology, Ocean University of China, Qingdao 266003, China The First Institute of Oceanography, National Oceanic Administration of China, Qingdao 266061, China Agricultural Product Inspection Center, Shandong Entry-Exit Inspection & Quarantine Bureau, Qingdao 266002, China
Ling-Xiao Liu
Affiliation:
Division of Life Science and Technology, Ocean University of China, Qingdao 266003, China Linyi Academy of Agricultural Sciences, Linyi 276012, China
Zhen-Xing Wu
Affiliation:
Division of Life Science and Technology, Ocean University of China, Qingdao 266003, China Agricultural Product Inspection Center, Shandong Entry-Exit Inspection & Quarantine Bureau, Qingdao 266002, China
Hong Lin
Affiliation:
Division of Life Science and Technology, Ocean University of China, Qingdao 266003, China
Ba-Fang Li
Affiliation:
Division of Life Science and Technology, Ocean University of China, Qingdao 266003, China
Xiu-Qin Sun
Affiliation:
The First Institute of Oceanography, National Oceanic Administration of China, Qingdao 266061, China
Get access

Abstract

We tested cross-species amplification of 68 existing microsatellite loci in 6 species of the Sparidae family: Acanthopagrus butcheri, Sparus aurata, Pagrus auratus, Chrysophrys major, Pagellus bogaraveo, Pagellus erythrinus and one species of Bothidae, Paralichthys olivaceus. Of the 68 loci screened, sixteen were found to be polymorphic when tested in 20 individual black sea bream, Acanthopagrus schlegeli. The number of alleles per locus ranged from 2 to 9, and the observed and expected heterozygosity ranged from 0.55 to 0.95, and from 0.58 to 0.87, respectively. Our results show that cross-species amplification of known microsatellite loci in closely related species is a highly promising source of microsatellite markers for A. schlegeli.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, G.J., Bernal Ramirez, J.H., Hauser, L., Smith, P., Carvalho, G.R., 2000, Screening of DNA polymorphisms in samples of archived scales from New Zealand snapper. J. Fish Biol. 56, 1283-1287. CrossRef
Brown, R.C., Tsalavouta, M., Terzoglou, V., Magoulas, A., McAndrew, B.J., 2005, Additional microsatellites for Sparus aurata and cross-species amplification within the Sparidae family. Mol. Ecol. Notes 5, 605-607. CrossRef
Chang, C.F., Yueh, W.S., 1990, Annual cycle of gonadal histology and steroid proWles in the juvenile males and adult females of the protandrous black porgy, Acanthopagrus schlegeli. Aquaculture 91, 179-196. CrossRef
Chen, S.L., Liu, Y.G., Xu, M.Y., Li, J., 2005, Isolation and characterization of polymorphic microsatellite loci from an EST-library of red sea bream (Chrysophrys major) and cross-species amplification. Mol. Ecol. Notes 5, 215-217. CrossRef
D'Amato, M.E., Lunt, D.H., Carvalho, G.R., 1999, Microsatellite markers for the hake Macruronus magellanicus amplify other gadoid fish. Mol. Ecol. 8, 1086-1087. CrossRef
Jean, C.T., Lee, S.C., Hui, C.F., Chen, C.T., 1996, Genetic variation of black porgy, Acanthopagrus schlegeli (Perciformes: Sparidae) in the coastal waters of Taiwan. Biochem. Syst. Ecol. 24, 211-219.
Jean, C.T., Lee, S.C., Hui, C.F., Chen, C.T., 1998, Variation in Mitochondrial DNA Sequences of Black Porgy, Acanthopagrus schlegeli, in the Coastal Waters of Taiwan. Zool. Stud. 37, 22-30.
Launey, S., Krieg, F., Haffray, P., Bruant, J.S., Vannier, A., Guyomard, R., 2003, Twelve new microsatellite markers for gilted seabream (Sparus aurata L.): characterization, polymorphism and linkage. Mol. Ecol. Notes 3, 457-459. CrossRef
Liu, Y.G., Zheng, M.G., Liu, L.X., Lin, H., Wang, D.F., Li, B.F., Sun, X.Q., 2006, Five new microsatellite loci for Oliver flounder (Paralichthys olivaceus) from an EST-library and cross-species amplification. Mol. Ecol. Notes 6, 371-373. CrossRef
Liu, Y.G., Chen, S.L., Li, B.F., 2005a, Assessing the genetic structure of three Japanese flounder (Paralichthys olivaceus) stocks by microsatellite markers. Aquaculture 243, 103-111. CrossRef
Liu, Y.G., Chen, S.L., Li, B.F., Wang, Z.J., Liu, Z.J., 2005b, Analysis of genetic variation in selected stocks of hatchery flounder, Paralichthys olivaceus, using AFLP markers. Biochem. System. Ecol. 33, 993-1005. CrossRef
Liu, Y.G., Wang, X.Y., Liu, L.X., 2004, Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci. 166, 677-685. CrossRef
Moore, S.S., Sargeant, L.L., King, T.J., Mattick, J.S., Georges, M., Hetzel, D.J.S., 1991, The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10, 654-660. CrossRef
Morin P.A., Mahboubi P., Wedel S., Rogers J., 1998, Rapid screening and comparison of human microsatellite markers in baboons: allele size is conserved, but allele number is not. Genomics 53,12-20.
Peakall, R., Gilmore, S., Keys, W., Morgante, M., Rafalski, A., 1998, Cross-species amplification of soybean (Glycine max) simple sequence repeats within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15, 1275-1287. CrossRef
Primmer, C.R., Merila, J., 2002, A low rate of crossspecies microsatellite amplification success in Ranid frogs. Conserv. Genet. 3, 445-449. CrossRef
RamSak, A., Garoia, F., Guarniero, I., Mannini, P., Tinti, F., 2003, Novel polymorphic microsatellite markers for the common pandora (Pagellus erythrinus) Mol. Ecol. Notes 3, 553-555. CrossRef
Rice, W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223-225. CrossRef
Rico, C., Rico, I., Hewitt, G., 1996, 470 million years of conservation of microsatellite loci among fish species. Proc. R. Soc. London, Ser. B 263, 549-557.
Schneider S., Roessli D., Excoffier L., 2000, ARLEQUIN: A software for population genetics data analysis. Genetics and Biometry Laboratory. University of Geneva, Geneva.
Scott, L.J., Shepherd, M., Henry, R.J., 2003, Characterization of highly conserved microsatellite loci in Araucaria cunninghamii and related species. Plant System. Evol. 236, 115-123. CrossRef
Smith, K.L., Alberts, S.C., Bayes, M.K., Bruford, M.W., Altmann, J., Ober, C., 2000, Crossspecies amplification, non-invasive genotyping, and non-Mendelian inheritance of human STRPs in Savannah baboons. Am. J. Primatol. 51, 219-227. 3.0.CO;2-G>CrossRef
Stockley, B.M., Rogers, A.D., Iyengar, A., Menezes, G., Santos, R., Long, A., 2000, Ten microsatellite loci isolated and developed for the blackspot seabream, Pagellus bogaraveo (Brunnich 1768). Mol. Ecol. 9, 999-1000. CrossRef
Takagi, M., Taniguchi, N., Cook, D., Doyle, R.W., 1997, Isolation and characterization of microsatellite loci from red sea bream Pagrus major and detection in closely related species. Fish. Sci. 63, 199-204. CrossRef
Tautz, D., Trick, M., Dover, G., 1986, Cryptic simplicity in DNA is a major source of genetic variation. Nature 322, 652-656. CrossRef
Yap, E.S., Spencer, P.B., Chaplin, J.A., Potter, I.C., 2000, The estuarine teleost, Acanthopagrus butcheri (Sparidae), shows low levels of polymorphism at five microsatellite loci. Mol. Ecol. 9, 2225-2226. CrossRef
Zane, L., Bargelloni, L., Patarnello, T., 2002, Strategies for microsatellite isolation: a review. Mol. Ecol. 11, 1-16. CrossRef