Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T03:29:47.920Z Has data issue: false hasContentIssue false

Evidence of donor effect on cultured pearl qualityfrom a duplicated grafting experiment on Pinctada margaritifera using wild donors

Published online by Cambridge University Press:  28 November 2012

Alexandre Tayale
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française University of Neuchatel, Laboratory of Evolutionary Botany, rue Argand 11, 2000 Neuchatel, Switzerland
Yannick Gueguen
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française
Cathy Treguier
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française Ifremer, 12 rue des Résistants, BP 86, 56470 La Trinité-sur-mer, France
Jacqueline Le Grand
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française Ifremer, Unité PFOM, UMR 6539 LEMAR, BP 70, 29280 Plouzané, France
Nathalie Cochennec-Laureau
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française Ifremer, 12 rue des Résistants, BP 86, 56470 La Trinité-sur-mer, France
Caroline Montagnani
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française Ifremer, UMR 5119 CNRS-IRD-Montpellier 2 Univ., 34095 Montpellier, France
Chin-Long Ky*
Affiliation:
Ifremer, Centre du Pacifique, UMR EIO241, Labex Corail, BP 7004, 98719 Taravao, Tahiti, Polynésie Française
*
a Corresponding author: [email protected]
Get access

Abstract

Producing high quality cultured black pearls from Pinctada margaritifera is one of the major challenges for the “pearl oyster” industry in French Polynesia. In order to assess donor effect on cultured pearl quality, wild Pinctada margaritifera originating from the Tuamotu Archipelago were used in a duplicated grafting experiment. After 12 months of culture, nucleus retention was assessed and seven pearl quality traits recorded on the 454 cultured pearls harvested from the experiment. The traits scored were nacre thickness and pearl weight, surface defects, lustre, grade, and the colour components: 1) darkness of cultured pearl colour, and 2) visual perception of colour class (bodycolor and/or overtone). Our results demonstrate for the first time that individual wild donors of implanted mantle grafts significantly affect these seven quality traits in P. margaritifera cultured pearls. This finding was repeated in two series of grafts made by different professional grafters. The wild donors could be ranked from “best” (e.g., the donor whose grafts produced the cultured pearl with the maximum lustre) to the “worst”. Moreover, we showed strong correlations between: 1) cultured pearl nacre thickness and grade, with grade A showing the greatest nacre thickness on average compared with grade D and rejects; and 2) nacre thickness/cultured pearl weight and colour components (darkness and visual “colour categories”), with the palest cultured pearls (i.e. white cultured pearls) being the smallest (lowest nacre thickness and weight). Thus, one way of enhancing P. margaritifera foundation stocks for a selective breeding program could be to select the “best” donors, using appropriate molecular tools. Generation of selected donor lines from these stocks through hatchery production would be one way to increase the quality of cultured pearl farming of P. margaritifera in French Polynesia.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamkewicz, L., Castagna, M., 1988, Genetics of shell colour and pattern in the bay scallop Argopecten irradians. J. Hered. 79, 1417. CrossRefGoogle Scholar
Arnaud-Haond, S., Goyard, E., Vonau, V., Herbault, C., Prou, J., Saulnier, D., 2007, Pearl formation : persistence of the graft during the entire process of biomineralization. Mar. Biotechnol. 9, 113116. CrossRefGoogle ScholarPubMed
Cochennec-Laureau, N., Montagnani, C., Saulnier, D., Fougerouse, A., Levy, P., Lo, C., 2010, A histological examination of grafting success in pearl oyster Pinctada margaritifera in French Polynesia. Aquat. Living Resour. 23, 131140. CrossRefGoogle Scholar
Cole, T.J., 1975, Inheritance of juvenile shell colour of the oyster drill, Urosalpinx cinerea. Nature 257, 794795. CrossRefGoogle ScholarPubMed
Cunha, R.L., Blanc, F., Bonhomme, F., Arnaud-Haond, S., 2011, Evolutionary patterns in pearl oysters of the genus Pinctada (Bivalvia : Pteriidae). Mar. Biotechnol. 13, 181192. CrossRefGoogle Scholar
Dagnelie P., 2007, Statistique théorique et appliquée, 3rd edn. De Boeck, Bruxelles.
Elen, S., 2002, Spectral reflectance and fluorescence characteristics of natural-valor and heat-treated “golden” south seas cultured pearls. Gems Gemmol. 37, 114123. CrossRefGoogle Scholar
Ellis S., Haws M., 1999, Producing pearls using the black-lip pearl oyster (Pinctada margaritifera). Aquafarmer Inf. Sheet 141, pp. 8.
Fujiwara, M., 1995, Inheritance of yellow colouration of the shell in the cockle Fulvia mutica. Nippon Suisan Gakkaishi 61, 927928. CrossRefGoogle Scholar
Innes, D.J., Haley, L.E., 1977, Inheritance of a shell colour polymorphism in the mussel. J. Hered. 68, 203204. CrossRefGoogle Scholar
Jerry, D.R., Kvingedal, R., Lind, C.E., Evans, B.S., Taylor, J.U.U., Safari, A.E., 2012, Donor-oyster derived heritability estimates and the effect of genotype x environment interaction on the production of pearl quality traits in the silver-lip pearl oyster, Pinctada maxima. Aquaculture 338, 6671. CrossRefGoogle Scholar
Joubert, C., Piquemal, D., Marie, B., Manchon, L., Pierrat, F., Zanella-Cléon, I., Cochennec-Laureau, N, Gueguen, Y., Montagnani, C., 2010, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell : focus on biomineralization. BMC Genom. 11, 113. CrossRefGoogle ScholarPubMed
Journal Officiel de la Polynésie française, délibération n° 2005-42 APF du 4 février 2005.
Karampelas, S., Fritsch, E., Gauthier, J.-P., Hainschwang, T., 2011, UV-Vis-NIR reflectance spectroscopy of natural-colour saltwater cultured pearls from Pinctada margaritifera. Gems Gemmol. 47, 3137. CrossRefGoogle Scholar
Landman N.H., Mikkelsen P.M., Bieler R., Bronson B., 2001, Pearls, a natural history. American Museum of Natural History & Harry N. Abrams Inc., New York, pp. 32–54.
Liu, Y., Shigley, J.E., Hurwit, K.N., 1999, Iridescence color of a shell of the mollusk Pinctada margartifera caused by diffraction. Optics Express 4, 177182. CrossRefGoogle Scholar
Linard, C., Gueguen, Y., Moriceau, J., Soyez, C., Hui, B., Raoux, A., Cuif, J.P., Cochard, J.C., Le Pennec, M., Le Moullac, G., 2011, Calcein staining of calcified structures in pearl oyster Pinctada margaritifera and the effect of food resource level on shell growth. Aquaculture 313, 149155. CrossRefGoogle Scholar
Marie, B., Joubert, C., Belliard, C., Tayale, A., Zanella-Cléon, I., Marin, F., Gueguen, Y., Montagnani, C., 2011, Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters. Amino Acids 42, 20092017. CrossRefGoogle ScholarPubMed
McGinty, E.L., Evans, B.S., Taylor, J.U.U., Jerry, D.R., 2010, Xenografts and pearl production in two pearl oyster species, P. maxima and P. margaritifera : effect on pearl quality and a key to understanding genetic contribution. Aquaculture 302, 175181. CrossRefGoogle Scholar
McGinty, E.L., Zenger, K.R., Taylor, J.U.U., Evans, B.S., Jerry, D.R., 2011, Diagnostic genetic marker unravel the interplay between host and donor oyster contribution in cultured pearl formation. Aquaculture 304, 2024. CrossRefGoogle Scholar
McGinty, E.L., Zenger, K.R., Jones, D.B., Jerry, D.R., 2012, Transcriptome analysis of biomineralisation-related genes within the pearl sac : host and donor oyster contribution. Mar. Genom. 5, 2733. CrossRefGoogle ScholarPubMed
McGill, R., Tukey, J.W., Larsen, W.A., 1978, Variations of box plots. Am. Stat. 32, 1216. Google Scholar
Montagnani, C., Marie, B., Marin, F., Belliard, C., Riquet, F., Tayalé, A., Zanella-Cléon, I., Fleury, E., Gueguen, Y., Piquemal, D., Cochennec-Laureau, N., 2011, Pmarg-pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera. Chembiochem 12, 20332043. CrossRefGoogle ScholarPubMed
Nagata, N., Dobashi, T., Manabe, Y., Usami, T., and Inokuchi, S., 1997, Modelling and visualisation of a pearl quality simulator. IEEE Trans. Visual. Comput. Graph. 3, 307 CrossRefGoogle Scholar
Richards,, C. S., 1985, A new pigmentation mutant in Biomphalaria glabrata. Malacologia 26, 145151. Google Scholar
Pfaff, G., Reynders, P., 1999, Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 19631981. CrossRefGoogle ScholarPubMed
Siegel S., Castellan N.J., 1988, Nonparametric statistics for the behavioral sciences. McGraw-Hill, New-York.
Snow, M.R., Pring, A., Self, P., Losic, D., Shapter, J., 2004, The origin of the colour of pearls in iridescence from nano-composite structures of the nacre. Am. Mineral. 89, 13531358. CrossRefGoogle Scholar
Talvard C., 2010, La perliculture en 2009, Points Forts de la Polynésie Française – Institut de la Statistique de la Polynésie Française n° 8/2010 pp. 1–12.
Wada, K.T., 1972, Relationship between calcium metabolism of pearl sac and pearl quality. Bull. Natl. Pearl Res. Lab. 16, 9492027. Google Scholar
Webster R., Anderson B.W., 1983, Gems, their sources, descriptions and identification. Butterworths, London, pp. 505–506.
Winer B.J., Brown D.R., Michels K.M., 1991, Statistical principles in experimental design, McGraw-Hill, New-York.