Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T11:29:01.657Z Has data issue: false hasContentIssue false

Continuous fluorescence recording as a way to improve Pacific oyster (Crassostrea gigas) models of paralytic shellfish toxin accumulation

Published online by Cambridge University Press:  01 April 2006

Régis Baron
Affiliation:
Ifremer, Department “Marine Food Science and Technology”, BP 21105, 44311 Nantes, France
Marielle Couedel
Affiliation:
Ifremer, Laboratory “Phycotoxins”, BP 21105, 44311 Nantes, France
Camille Joret
Affiliation:
Ifremer, Laboratory “Phycotoxins”, BP 21105, 44311 Nantes, France
Pierre Garen
Affiliation:
Ifremer, Laboratory “Pearl oyster domestication”, Centre de Tahiti, BP 7004, 98179 Taravao, Polynésie Française
Philippe Truquet
Affiliation:
Ifremer, Laboratory “Phycotoxins”, BP 21105, 44311 Nantes, France
Pierre Masselin
Affiliation:
Ifremer, Laboratory “Phycotoxins”, BP 21105, 44311 Nantes, France
Michèle Bardouil
Affiliation:
Ifremer, Laboratory “Phycotoxins”, BP 21105, 44311 Nantes, France
Patrick Lassus
Affiliation:
Ifremer, Laboratory “Phycotoxins”, BP 21105, 44311 Nantes, France
Get access

Abstract

A simple system was used to simulate the effect of alternating toxic (paralytic shellfish poisoning toxins) and non-toxic microalgal diets on oyster feeding behaviors and rates of toxin accumulation. These experimental conditions were meant to reflect, to some extent, the incoming and outgoing fluxes of toxic algae observed at the mouth of the Penzé estuary (Northern Brittany, France). Physiological and toxicological parameters were estimated based on fluorescence measurements recorded continuously at the outlet of each experimental tank, which contained a single oyster. Q tox, this variable describes toxin uptake in oysters, it was used (instead of the toxin ingestion rate): i) in simple graphical analyses, ii) as well as in one- and two-compartment models. Results show that toxin uptake varies widely from one individual to another and is not proportional to the concentration of toxic algae in sea water. A one-compartment model with individual fluorescence recordings as “input” data gave questionable results, however, a two-compartment model was found to effectively describe contamination kinetics in oysters. Limitations of this model as well as possible improvements are discussed.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardouil, M., Bohec, M., Bougrier, S., Lassus, P., Truquet, P., 1996, Feeding responses of Crassostrea gigas (Thunberg) to inclusion of different proportions of toxic dinoflagellates in their diet. Oceanol. Acta. 19, 177-182.
Blanco, J., Moroño, A., Franco, J., Reyero, M.I., 1997, PSP detoxification kinetics in the mussel Mytilus galloprovincialis. One- and two-compartment models and the effect of some environmental variables. Mar. Ecol. Prog. Ser. 158, 165-175.
Blanco, J., Fernandez, M.L., Miguez, A., Moroño, A., 1999, Okadaic acid depuration in the mussel Mytilus galloprovincialis: one- and two-compartment models and the effect of environmental conditions. Mar. Ecol. Prog. Ser. 176, 153-163. CrossRef
Blanco, J., Acosta, C.P., Bermudez de la Puente, M., Salgado, C., 2002a, Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallop Pecten maximus. Aquat. Toxicol. 60, 111121.
Blanco, J., Bermudez de la Puente, M., Arevalo, F., Salgado, C., Moroño, A., 2002b, Depuration of mussels (Mytilus galloprovincialis) contaminated with domoic acid. Aquat. Living Resour. 15, 53-60. CrossRef
Blanco, J., Reyero, M.I., Franco, J.M., 2003, Kinetics of accumulation and transformation of paralytic shellfish toxins in the blue mussel Mytilus galloprovincialis. Toxicon 42, 777-784. CrossRef
Bricelj, M., Shumway, S., 1998, Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics and biotransformation. Rev. Fish. Sci. 6, 315-383. CrossRef
Brijcelj M., MacQuarrie S., Twarog M., 2000, Differential sensitivity and uptake of PSP toxins within and between softshell clam (Mya arenaria) populations from Atlantic Canada. In: Proc. 9th Int. Conf. Harmful algal blooms, 7-11 Febr. Hobart, Tasmania, abstract book, 9.
Douglas, D., Kenchington, E., Bird, C., Pocklington, R., Bradford, B., Silvert, W., 1997, Accumulation of domoic acid by the sea scallop (Placopecten magellanicus) fed cultured cells of toxic Pseudo-nitzschia multiseries. Can. J. Fish. Aquat. Sci. 54, 907-913. CrossRef
Lassus P., 1992, Accumulation des biotoxines par les coquillages. In: Coquillages et santé publique : du risque à la prévention. Lesne (Ed.), ENSP, Rennes, pp. 79-98.
Lassus, P., Ledoux, M., Bardouil, M., Bohec, M., Erard-Le Denn, E., 1994, Kinetics of Alexandrium minutum Halim toxin accumulation in mussels and clams. Nat. Toxins 2, 329-333. CrossRef
Lassus P., Wildish D., Bardouil M., Martin J.L., Bohec M., Bougrier S., 1996, Ecophysiological study of toxic Alexandrium spp effects on the oyster Crassostrea gigas. In: Yasumoto, T., Oshima, Y., Fukuyo, Y. (Eds.), Harmful and Toxic Algal Blooms, IOC- UNESCO, 409-412.
Lassus, P., Bardouil, M., Beliaeff, B., Masselin, P., Naviner, M., Truquet, P., 1999, Effect of a continuous supply of the toxic dinoflagellate Alexandrium minutum Halim on the feeding behavior of the Pacific oyster (Crassostrea gigas Thunberg). J. Shellfish Res. 18, 211-216.
Lassus, P., Bardouil, M., Masselin, P., Naviner, M., Truquet, P., 2000, Comparative efficiencies of different non-toxic microalgal diets in detoxification of PSP-contaminated oysters (Crassostrea gigas Thunberg). J. Nat. Toxins 9, 1-12.
Lassus, P., Baron, R., Garen, P., Truquet, P., Masselin, P., Bardouil, M., Leguay, D., Amzil, Z., 2004, Paralytic shellfish poison outbreaks in the Penzé estuary: Environmental factors affecting toxin uptake in the oyster, Crassostrea gigas. Aquat. Living Resour. 17, 207-214. CrossRef
Li, A.M.Y., Yu, P.K.N., Hsieh, D.P.H., Wang, W.X., Wu, R.S.S., Lam, P.K.S., 2005, Uptake and depuration of paralytic shellfish toxins in the green-lipped mussel, Perna viridis: A dynamic model. Environ. Toxicol. Chem. 24, 129-135. CrossRef
Masselin P., Le Saux J.C., Le Gal D., Lassus P., 1996, Dosage par CLHP des toxines paralysantes de coquillages contaminés par Alexandrium minutum en rivières de Morlaix et de la Penzé en 1994. Rapp. Interne Ifremer Nantes DEL/96.04.
Masselin P., Amzil Z., Abadie E., Carreras A., Chiantella C., Le Bec C., Nézan E., Truquet P., 2001, Paralytic shellfish poisoning on French Mediterranean coast in the autumn of 1998: Alexandrium tamarense as the causative agent. In: Hallegraeff G.M., Blackburn S.I., Bolch C.J., Lewis R.J. (Eds.), Harmful Algal Blooms 2000. IOC-UNESCO, 26-29.
Morin P., Erard-Le Denn E., Maguer J.F., Madec, C., Videau, C., Legrand, J., Macé, E., 2000, Étude des causes de prolifération de microalgues toxiques en mer : cas d'Alexandrium. Final AELB Rep. Convention 7.98.9476.
Moroño A., Blanco J., 1997, Modelling the kinetics of PSP toxin uptake and release in mussels. Harmful Algae News, IOC-UNESCO, 16, 10-12.
Moroño A., Maneiro J., Pazos Y., Blanco J., 1998, Modelling the accumulation of PSP toxins in Galician mussels: results and perspectives. In: Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T. (Eds.), Harmful Algae, Xunta de Galicia, IOC-UNESCO, 441-443.
Moroño, A., Franco, J., Miranda, M., Reyero, M.I., Blanco, J., 2001, The effect of mussel size, temperature, seston volume, food quality and volume-specific toxin concentration on the uptake rate of PSP toxins by mussels (Mytilus galloprovincialis Lmk). J. Exp. Mar. Biol. Ecol. 257, 117-132. CrossRef
Oshima Y., 1995, Chemical and enzymatic transformation of paralytic shellfish toxins in marine organisms. In: Lassus P., Arzul G., Erard E., Gentien P., Marcaillou C. (Eds.), Harmful Marine Algal Blooms. Lavoisier, Paris, pp. 475-480.
Shumway, S.E., Cembella, A.D., 1993, The impact of toxic algae on scallop culture and fisheries. Rev. Fish. Sci. 3, 65-105.
Silvert, W., Cembella, A.D., 1995, Dynamic modelling of phycotoxin kinetics in the blue mussel, Mytilus edulis, with implications for other marine invertebrates. Can. J. Fish. Aquat. Sci. 52, 521-531. CrossRef
Silvert W., Bricelj M., Cembella A.D., 1998, Dynamic modelling of PSP toxicity in the surfclam (Spisula solidissima): multicompartmental kinetics and biotransformation. In: Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T., (Eds.), Harmful Algae, Xunta de Galicia IOC-UNESCO, pp. 437-440.
Vila M., Delgado M., Camp J., 2001, First detection of widespread toxic events caused by Alexandrium catenella in the Mediterranean Sea. In: Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J., Lewis, R.J. (Eds.), Harmful Algal Blooms 2000. IOC-UNESCO, pp. 8-11.
Wildish, D., Lassus, P., Martin, J., Saulnier, A., Bardouil, M., 1998, Effect of the PSP-causing dinoflagellate, Alexandrium sp., on the initial feeding response of Crassostrea gigas. Aquat. Living Resour. 11, 35-43. CrossRef
Yamamoto, T., Flynn, K., Takayama, H., 2003, Application of a two-compartment one-toxin model to predict the toxin accumulation in Pacific oysters in Hiroshima Bay, Japan. Fish. Sci. 69, 944-950. CrossRef