Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T19:26:31.803Z Has data issue: false hasContentIssue false

Chemical and ecotoxicological characterization of the “Erika” petroleum:Bio-tests applied to petroleum water-accommodated fractions and natural contaminated samples

Published online by Cambridge University Press:  15 October 2004

Olivier Geffard
Affiliation:
CEMAGREF, Laboratoire d'écotoxicologie, 3 bis quai Chauveau, 69336 Lyon, France
Hélène Budzinski
Affiliation:
Laboratoire de Physico- et Toxico-Chimie des Systèmes Naturels, UMR 5472 CNRS, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
Karyn LeMenach
Affiliation:
Laboratoire de Physico- et Toxico-Chimie des Systèmes Naturels, UMR 5472 CNRS, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
Get access

Abstract

Oil spills are an important source of PAHs in marine and coastal areas and comprise a short- and long-term threat for aquatic organisms. Some PAHs are known to be toxic, in particular mutagenic and/or carcinogenic, and their toxicological effects must be evaluated. Here, the impact of the “Erika” oil spill, which occurred at the end of 1999, was studied by combining chemical (PAH analyses) and toxicological approaches (biological effect assessment). “Erika” elutriates have been found to be more toxic than the elutriate obtained with a crude oil, Bal 250, inducing deleterious effects in Mytilus galloprovincialis and Crassostrea gigas embryos and in Isochrysis galbana algae. The embryotoxicity test in mussel is more sensitive than growth test in I. galbana. Naphthalenic compounds make up more than 95% of total PAHs quantified in elutriates. “Erika” elutriates are enriched with naphthalene, methyl-naphthalene, anthracene and higher-molecular-weight compounds. On the contrary, Bal 250 elutriate is characterized by the highest dibenzothiophene, methyl-dibenzothiophene and dimethyl-dibenzothiophene levels. Weathering does not highly affect the toxicity of the “Erika” oil. This study also confirms the potential impact of the “Erika” fuel on the biological quality of sea water and sediments from Traict du Croisic on the Atlantic coast of France.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allred, P.M., Giesy, J.P., 1985, Solar radiation-induced toxicity of anthracene to Daphnia pulex. Environ. Toxicol. Chem. 4, 219-226. CrossRef
Barron, M.G., Ka'aihue, L., 2001, Potential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska Waters. Mar. Pollut. Bull. 43, 86-92. CrossRef
Belkin, S., Stieber, M., Tiehm, A., Frimmel, F.H., Abeliovich, A., Ulitzur, S., Werner, P., 1994, Toxicity and genotoxicity enhancement during polycyclic aromatic hydrocarbons biodegradation. Environ. Toxicol. Water Qual. 9, 303-309. CrossRef
Beiras, R., His, E., 1995, Toxicity of fresh and freeze-dried hydrocarbon polluted sediments to Crassostrea gigas embryos. Mar. Pollut. Bull. 30, 47-49. CrossRef
Budzinski H., Papineau A., Baumard P., Garrigues P., 1995, Extraction assistée par chauffage microondes focalisées (MOF) à pression ambiante des composés organiques dans les matrices naturelles : application à l'analyse des composés aromatiques. C. R. Acad. Sci. Paris 321, IIb, 69-76.
Budzinski, H., Letellier, M., Garrigues, P., Le Menach, K., 1999, Optimisation of the microwave-assisted extraction in open cell of PAHs from soils and sediments – Study of moisture effect. J. Chromatogr. A. 837, 187-200. CrossRef
Burton G.A., 1992, Sediment toxicity assessment. Lewis Publishers, London.
Chapman, P.M., Long, E.R., 1983, The use of bioassays as part of a comprehensive approach to marine pollution assessment. Mar. Pollut. Bull. 14, 81-84. CrossRef
Fernandes, M.B., Sicre, M.A., Boireau, A., Tronczynski, Y., 1997, Polyaromatic Hydrocarbon (PAH) Distributions in the Seine River and its Estuary. Mar. Pollut. Bull. 34, 857-867. CrossRef
Fukuyama, A.K., Shigenaka, G., Hoff, R.Z., 2000, Effects of Residual Exxon Valdez Oil on Intertidal Protothaca staminea: Mortality, Growth, and Bioaccumulation of Hydrocarbons in Transplanted Clams. Mar. Pollut. Bull. 40, 1042-1050. CrossRef
Garrigues, P., Budzinski, H., Manitz, M.P., Wise, S., 1995, Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution. Pol. Arom. Comp. 7, 275-284 CrossRef
Geffard, O., Budzinski, H., Augagneur, S., Seaman, M.N.L., His, E., 2001, Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas). Environ. Toxicol. Chem. 20, 1605-1611. CrossRef
Geffard, O., Budzinski, H., His, E., 2004a, The effects of decanted sediments on embryogenesis in oysters, Crassostrea gigas. Environ. Toxicol. Chem. 23, 1655-1661. CrossRef
Geffard, O., Budzinski, H., His, E., Seaman, M.N.L., Garrigues, P., 2002, Relationships between contaminant levels in marine sediments and their biological effects upon embryos of oysters, Crassostrea gigas. Environ. Toxicol. Chem. 21, 2310-2318. CrossRef
Geffard, O., His, E., Budzinski, H., Chiffoleau, J.F., Coynel, A., Etcheber, H., 2004b, Effects of storage method and duration on the toxicity of marine sediments to embryos of oysters Crassostrea gigas. Environ. Pollut. 129, 457-465. CrossRef
Harkey, G.A., Hoof, P.L., Landrum, P.F., 1995, Bioavailability of polycyclic aromatic hydrocarbons from a historically contaminated sediment core. Environ. Toxicol. Chem. 14, 1551-1560. CrossRef
His, E., Beiras, R., Seaman, M.N.L., 1999, The assessment of marine pollution – Bioassays with bivalve embryos and larvae. Adv. Mar. Biol. 37, 1-178. CrossRef
His, E., Seaman, M.N.L., Beiras, R., 1997, A simplification of the bivalve embryogenesis larval development bioassay method for water quality assessment. Water Res. 31, 351-355. CrossRef
Ho, K., Patton, L., Latimer, J.S., Pruel, R.J., Pelletier, M., McKinney, R., Jayaraman, S., 1999, The Chemistry and Toxicity of Sediment Affected by Oil from the North Cape Spilled into Rhode Island Sound. Mar. Pollut. Bull. 38, 314-323. CrossRef
Lamoureux, E., Brownawell, B.J., 1999, Chemical and biological availability of sediment-sorbed hydrophobic organic contaminants. Environ. Toxicol. Chem. 18, 1733-1741. CrossRef
Leppänen, M.T., Kukkonen, J.V.K., 2000, Effect of sediment-chemical contact time on availability of sediment-associated pyrene and benzo(a)pyrene to oligochaete worms and semi-permeable membrane devices. Aquat. Toxicol. 49, 227-241. CrossRef
Little, E.E., Cleveland, L., Calfee, R., Barron, M.G., 2000, Assessment of the photoenhanced toxicity of a weathered oil to the tidewater silverside. Environ. Toxicol. Chem. 19, 926-932. CrossRef
McPherson, C.A., Chapman, P.M., 2000, Copper effects on potential sediment test organisms: the importance of appropriate sensitivity. Mar. Pollut. Bull. 40, 656-665. CrossRef
Page, C.A., Bonner, J.S., Sumner, P.L., Autenrieth, R.L., 2000, Solubility of petroleum hydrocarbons in oil/water systems. Mar. Chem. 70, 79-87. CrossRef
Pelletier, M.C., Burgess, R.M., Ho, K.T., Kuhn, A., McKinney, R.A., Ryba, A., 1997, Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles. Environ. Toxicol. Chem. 16, 2190-2199. CrossRef
Saeed, T., Al-Mutairi, M., 2000, Comparative composition of polycyclic aromatic hydrocarbons (PAHs) in the sea water-soluble fractions of different Kuwaiti crude oils. Adv. Environ. Res. 4, 141-145. CrossRef
Soclo H., 1986, Étude de la distribution des hydrocarbures aromatiques polycycliques dans les sédiments marins récents, identification des sources. Thèse. Université de Bordeaux I, Bordeaux.
Sokal R.R., Rohlf F.J., 1981, Biometry. Freeman WH, San Francisco, CA, USA.
Taylor D., 1978, A summary of the data on the toxicity of various materials to aquatic life. 5. Copper. Imperial. Chem. Industries. Rapp. BL/A/1900.
Thorsen, W.A., Cope, W.G., Shea, D., 2004, Bioavailability of PAHs: Effects of Soot Carbon and PAH Source. Environ. Sci. Technol. 38, 2029-2037. CrossRef
Tronczynski J., Munschy C., Moisan K., 1999, Les contaminants organiques qui laissent des traces : sources, transport. Programme scientifique Seine-Aval, Fasc. 12, Ifremer.
Walne, P.R., 1970, Present problems in the culture of the larvae of Ostrea edulis. Helgol. Wiss. Meeresunt. 20, 514-525. CrossRef
White, K.L., 1986, An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Environ. Carcino. Rev. C 4, 163-202. CrossRef