Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T17:02:15.402Z Has data issue: false hasContentIssue false

Vocabulary size and auditory word recognition in preschool children

Published online by Cambridge University Press:  11 May 2016

FRANZO LAW II*
Affiliation:
University of Wisconsin–Madison
TRISTAN MAHR
Affiliation:
University of Wisconsin–Madison
ALISSA SCHNEEBERG
Affiliation:
University of Wisconsin–Madison
JAN EDWARDS
Affiliation:
University of Wisconsin–Madison
*
ADDRESS FOR CORRESPONDENCE Franzo Law II, Department of Psychology and Department of Communications Sciences and Disorders, University of Wisconsin–Madison, 1500 Highland Avenue, Room 489, Madison, WI 53705. E-mail: [email protected]

Abstract

Recognizing familiar words quickly and accurately facilitates learning new words, as well as other aspects of language acquisition. This study used the visual world paradigm with semantic and phonological competitors to study lexical processing efficiency in 2- to 5-year-old children. Experiment 1 found this paradigm was sensitive to vocabulary-size differences. Experiment 2 included a more diverse group of children who were tested in their native dialect (either African American English or mainstream American English). No effect of stimulus dialect was observed. The results showed that vocabulary size was a better predictor of eye gaze patterns than was maternal education, but that maternal education level had a moderating effect; as maternal education level increased, vocabulary size was less predictive of lexical processing efficiency.

Type
Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adank, P., Evans, B. G., Stuart-Smith, J., & Scott, S. K. (2009). Comprehension of familiar and unfamiliar native accents under adverse listening conditions. Journal of Experimental Psychology: Human Perception and Performance, 35, 520529.Google Scholar
Adank, P., & McQueen, J. M. (2007). The effect of an unfamiliar regional accent on spoken comprehension. Paper presented at the 16th International Congress of Phonetic Sciences, Saarbrüken, Germany.Google Scholar
Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition: Evidence for continuous mapping models. Journal of Memory and Language, 38, 419439.Google Scholar
Arias-Trejo, N., & Plunkett, K. (2010). The effects of perceptual similarity and category membership on early word-referent identification. Journal of Experimental Child Psychology, 105, 6380. doi:10.1016/j.jecp.2009.10.002 Google Scholar
Barr, D. J. (2008). Analyzing “visual world” eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59, 457474. doi:10.1016/j.jml.2007.09.002 Google Scholar
Bates, D. (2006). Lmer, p-values and all that. Paper presented at the ETH Seminar for Statistics. Retrieved from https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. doi:10.18637/jss.v067.i01 CrossRefGoogle Scholar
Bjorklund, D. F. (1987). How age changes in knowledge base contribute to the development of children's memory: An interpretive review. Developmental Review, 7, 193–130. doi:10.1016/0273-2297(87)90007-4 Google Scholar
Bortfeld, H., Rathbun, K., Morgan, J., & Golinkoff, R. (2003). What's in a name? Highly familiar items anchor infants’ segmentation of fluent speech. In Beachley, B., Brown, A., & Conlin, F. (Eds.), Proceedings of the 27th Annual Boston University Conference on Language Development (Vol. 1, pp. 162172). Somerville, MA: Cascadilla.Google Scholar
Bornstein, M. H., Haynes, M. O., & Painter, K. M. (1998). Sources of child vocabulary competence: A multivariate model. Journal of Child Language, 25, 367393. doi:10.1017/S0305000998003456 Google Scholar
Capone, N. C., & McGregor, K. K. (2005). The effect of semantic representations on toddlers’ word retrieval. Journal of Speech, Language, and Hearing Research, 48, 14681480. doi:10.1044/1092-4388(2005/102) Google Scholar
Clopper, C. G. (2012). Effects of dialect variation on the semantic predictability benefit. Language and Cognitive Processes, 27, 10021020.Google Scholar
Craig, H. K., Thompson, C. A., Washington, J. A., & Potter, S. L. (2003). Phonological features of child African American English. Journal of Speech, Language, and Hearing Research, 46, 623635. doi:10.1044/1092-4388(2003/049) Google Scholar
Craig, H. K., & Washington, J. A. (2002). Oral language expectations for African American pre- schoolers and kindergartners. American Journal of Speech–Language Pathology, 11, 5970. doi:10.1044/1058-0360(2002/007) CrossRefGoogle Scholar
Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test (4th ed.). Minneapolis, MN: NCS Pearson.Google Scholar
Edwards, J., Beckman, M. E., & Munson, B. (2004). Vocabulary size and phonotactic production accuracy and fluency in nonword repetition. Journal of Speech, Language, and Hearing Research, 47, 421436. doi:10.1044/1092-4388(2004/034) Google Scholar
Ensminger, M. E., & Fothergill, K. (2003). A decade of measuring SES: What it tells us and where to go from here. In Bornstein, M. H. & Bradley, R. H. (Eds.), Socioeconomic status, parenting, and child development. Mahwah, NJ: Erlbaum.Google Scholar
Felder, L. (2006). Aptitude, attitude and motivation in second language proficiency: A test of Clément's model. Unpublished manuscript.Google Scholar
Fenson, L., Marchman, V. A., Thal, D. J., Dale, P. S., Reznick, J. S., & Bates, E. (2007). MacArthur–Bates Communicative Development Inventories: User's guide and technical manual (2nd ed.). Baltimore, MD: Brookes.Google Scholar
Fernald, A. (2010). Getting beyond the “convenience sample” in research on early cognitive development. Behavioral and Brain Sciences, 33, 9192. doi:10.1017/S0140525X10000294 Google Scholar
Fernald, A., & Marchman, V. A. (2012). Individual differences in lexical processing at 18 months predict vocabulary growth in typically-developing and late-talking toddlers. Child Development, 83, 203222. doi:10.1111/j.1467-8624.2011.01692.x Google Scholar
Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and vocabulary are evident at 18 months. Developmental Science, 16, 234248. doi:10.1111/desc.12019 Google Scholar
Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in understanding: Speech processing efficiency and vocabulary growth across the 2nd year. Developmental Psychology, 42, 98116. doi:10.1037/0012-1649.42.1.98 Google Scholar
Fernald, A., Swingley, D., & Pinto, J. P. (2001). When half a word is enough: Infants can recognize spoken words using partial phonetic information. Child Development, 72, 10031015. doi:10.1111/1467-8624.00331 Google Scholar
Fernald, A., Zangl, R., Portillo, A. L., & Marchman, V. A. (2008). Looking while listening: Using eye movements to monitor spoken language comprehension by infants and young children. In Sekerina, I. A., Fernández, E. M., & Clahsen, H. (Eds.), Developmental psycholinguistics: On-line methods in children's language processing. Amsterdam: Benjamins.Google Scholar
Groothuis-Oudshoorn, K., & van Buuren, S. (2011). MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Brookes.Google Scholar
Hoff-Ginsberg, E. (1991). Mother–child conversation in different social classes and communicative settings. Child Development, 62, 782796. doi:10.1111/1467-8624.ep9109162253 Google Scholar
Hoff-Ginsberg, E. (1998). The relation of birth order and socioeconomic status to children's language experience and language development. Applied Psycholinguistics, 19, 603629. doi:10.1017/S0142716400010389 Google Scholar
Huang, Y. T., & Snedeker, J. (2011). Cascading activation across levels of representation in children's lexical processing. Journal of Child Language, 38, 644661.Google Scholar
Huettig, F., & Altmann, G. T. M. (2005). Word meaning and the control of eye fixation: Semantic competitor effects and the visual world paradigm. Cognition, 96, B23B32. doi:10.1016/j.cognition.2004.10.003 Google Scholar
Huettig, F., & McQueen, J. M. (2007). The tug of war between phonological, semantic and shape information in language-mediated visual search. Journal of Memory and Language, 57, 460482. doi:10.1016/j.jml.2007.02.001 Google Scholar
Hurtado, N., Grüter, T., Marchman, V. A., & Fernald, A. (2014). Relative language exposure, processing efficiency and vocabulary in Spanish-English bilingual toddlers. Bilingualism: Language and Cognition, 17, 189202. doi:10.1017/S136672891300014X Google Scholar
Hurtado, N., Marchman, V. A., & Fernald, A. (2007). Spoken word recognition by Latino children learning Spanish as their first language. Journal of Child Language, 33, 227249. doi:10.1017/S0305000906007896 Google Scholar
Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early vocabulary growth: Relation to language input and gender. Developmental Psychology, 27, 236248. doi:10.1037/0012-1649.27.2.236 Google Scholar
Inhoff, A. W., & Radach, R. (1998). Definition and computation of oculomotor measures in the study of cognitive processes. In Underwood, G. M. (Ed.), Eye guidance in reading and scene perception (pp. 2953). Oxford: Elsevier.Google Scholar
Law II, F., & Edwards, J. R. (2014). Effects of vocabulary size on online lexical processing by preschoolers. Language Learning and Development. Advance online publication. doi:10.1080/15475441.2014.961066 Google Scholar
Magnuson, J. S., Mirman, D., & Myers, E. (2013). Spoken word recognition. In Reisberg, D. (Ed.), Oxford handbook of cognitive psychology (pp. 412441). Oxford: Oxford University Press.Google Scholar
Mahr, T., McMillan, B., Saffran, J., Ellis Weismer, S., & Edwards, J. (2015). Anticipatory coartic- ulation facilitates word recognition in toddlers. Cognition, 142, 345350. doi:10:1016/j.cognition.2015.05.009 Google Scholar
Marchman, V. A., & Fernald, A. (2008). Speed of word recognition and vocabulary knowledge in infancy predict cognitive and language outcomes in later childhood. Developmental Science, 11, F9F16. doi:10.1111/j.1467-7687.2008.00671.x Google Scholar
Mayor, J., & Plunkett, K. (2014). Infant word recognition: Insights from TRACE simulations. Journal of Memory and Language, 71, 89123. doi:10.1016/j.jml.2013.09.009 Google Scholar
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186. doi:10.1016/0010-0285(86)90015-0 Google Scholar
McMurray, B., Samelson, V. M., Lee, S. H., & Tomblin, J. B. (2010). Individual differences in online spoken word recognition: Implications for SLI. Cognitive Psychology, 60, 139. doi:10.1016/j.cogpsych.2009.06.003 Google Scholar
Metsala, J. L. (1999). Young children's phonological awareness and nonword repetition as a function of vocabulary development. Journal of Educational Psychology, 91, 319. doi:10.1037//0022-0663.91.1.3 CrossRefGoogle Scholar
Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton, FL: Chapman & Hall.Google Scholar
Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59, 475494. doi:10.1016/j.jml.2007.11.006 CrossRefGoogle ScholarPubMed
Morrison, C. M., Chappell, T. D., & Ellis, A. W. (1997). Age of acquisition norms for a large set of object names and their relation to adult estimates and other variables. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 50, 528559.Google Scholar
Nathan, L., Wells, B., & Donlan, C. (1998). Children's comprehension of unfamiliar regional dialects: A preliminary investigation. Journal of Child Language, 24, 343365.Google Scholar
Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of socio-economic status in kindergarten children. Developmental Science, 8, 7487. doi:10.1111/j.1467-7687.2005.00394.x Google Scholar
Pan, B. A., Rowe, M. L., Singer, J. D., & Snow, C. E. (2005). Maternal correlates of growth in toddler vocabulary production in low-income families. Child Development, 76, 763782. doi:10.1111/j.1467-8624.2005.00876.x Google Scholar
Radach, R., Heller, D., & Inhoff, A. (1999). Occurrence and function of very short fixation durations in reading. In Becker, W., Deubel, H., & Mergner, T. (Eds.), Current oculomotor research: Physiological and psychological aspects (pp. 321331). New York: Springer.Google Scholar
Rescorla, L. (2002). Language and reading outcomes to age 9 in late-talking toddlers. Journal of Speech, Language, and Hearing Research, 45, 360371. doi:10.1044/1092-4388(2002/028) Google Scholar
Rescorla, L. (2009). Outcomes in late-talking toddlers: Support for a dimensional perspective on language delay. Journal of Speech, Language, and Hearing Research, 52, 1630. doi:10.1044/1092-4388(2008/07-0171) Google Scholar
Salverda, A. P., Kleinschmidt, D., & Tanenhaus, M. K. (2014). Immediate effects of anticipatory coarticulation in spoken-word recognition. Journal of Memory and Language, 71, 145163. doi:10.1016/j.jml.2013.11.002 Google Scholar
Shi, R., Werker, J. F., & Cutler, A. (2003). Function words in early speech perception. Paper presented at the 15th International Conference of Phonetic Sciences, Adelaide, Australia.Google Scholar
Shipley, K. G., & McAfee, J. G. (2015). Assessment in speech–language pathology: A resource manual (5th ed.). Boston: Cengage Learning.Google Scholar
Swingley, D., Pinto, J. P., & Fernald, A. (1999). Continuous processing in word recognition at 24 months. Cognition, 71, 73108. doi:10.1016/S0010-0277(99)00021-9 Google Scholar
Thompson, M., & Thompson, G. (1972). Response of infants and young children as a function of auditory stimuli and test methods. Journal of Speech and Hearing Research, 15, 699707. doi:10.1044/jshr.1504.699 Google Scholar
van Heugten, M., Krieger, D., & Johnson, E. K. (2015). The developmental trajectory of toddlers’ comprehension of unfamiliar regional accents. Language Learning and Development, 11, 4165. doi: 10.1080/15475441.2013.879636 Google Scholar
van Heugten, M., & Johnson, E. K. (2014). Learning to contend with accents in infancy: Benefits of brief speaker exposure. Journal of Experimental Psychology: General, 143, 340350. http://dx.doi.org/10.1037/a0032192 Google Scholar
Vermeer, A. (2001). Breadth and depth of vocabulary in relationship to L1/L2 acquisition and frequency of input. Applied Psycholinguistics, 22, 217234.Google Scholar
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience streng-thens processing and builds vocabulary. Psychological Science, 24, 21432152. doi:10.1177/0956797613488145 Google Scholar
Werker, J. F., Fennell, C. T., Corcoran, K. M., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: Effects of age and vocabulary size. Infancy, 3, 239273. doi:10.1207/15250000252828226 Google Scholar
White, K. S., & Morgan, J. L. (2008). Sub-segmental detail in early lexical representations. Journal of Memory and Language, 59, 114132. doi:10.1016/j.jml.2008.03.001 Google Scholar
Williams, K. T. (2007). Expressive Vocabulary Test (2nd ed.). Minneapolis, MN: Pearson Assessments.Google Scholar