Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:01:08.281Z Has data issue: false hasContentIssue false

Sentence production in Parkinson disease: Effects of conceptual and task complexity

Published online by Cambridge University Press:  08 June 2011

MICHELLE S. TROCHE*
Affiliation:
Malcom Randall Veterans Affairs Medical Center, Gainesville, and University of Florida
LORI J. P. ALTMANN
Affiliation:
University of Florida
*
ADDRESS FOR CORRESPONDENCE Michelle S. Troche, Department of Speech, Language and Hearing Sciences, University of Florida, P.O. Box 117420, Gainesville, FL 32611. E-mail: [email protected]

Abstract

Experimental studies of sentence production in Parkinson disease (PD) are rare. This study examined the relationship between cognitive abilities and performance on two sentence production tasks, sentence repetition, and sentence generation, in which complexity was manipulated. Thirty-eight older adults aged 60 to 85, half with PD, completed the two language tasks plus a cognitive battery. Participants with PD performed more poorly in the repetition task overall, especially in fluency, but differences were no longer significant once cognitive ability was controlled. In contrast, on the sentence generation task the PD group was significantly impaired on all language dimensions and overall performance. Although cognitive ability accounted for significant variance in all measures of sentence generation, the PD group remained significantly impaired when these factors were controlled. These findings suggest that, although language production is influenced by cognitive abilities, it can be significantly impaired in PD over and above the effects of differences in cognitive abilities.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarsland, D., Andersen, K., Larsen, J. P., Lolk, A., & Kragh-Sorensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Archives of Neurology, 60, 387392.CrossRefGoogle ScholarPubMed
Alexander, M. P., Naeser, M. A., & Palumbo, C. L. (1987). Correlations of subcortical CT lesion sites and aphasia profiles. Brain, 110, 961991.CrossRefGoogle ScholarPubMed
Altgassen, M., Phillips, L., Kopp, U., & Kliegel, M. (2007). Role of working memory components in planning performance of individuals with Parkinson's disease. Neuropsychologia, 45, 23932397.CrossRefGoogle ScholarPubMed
Altmann, L. P. J. (2004). Constrained sentence production in probable Alzheimer's disease. Applied Psycholinguistics, 25, 5772.CrossRefGoogle Scholar
Altmann, L. P. J., & Efros, D. (2006). Understanding complex sentences: Answer position interacts with relative clause location. Paper presented at the International Neuropsychological Society, Boston.Google Scholar
Altmann, L. P. J., & Kemper, S. (2006). Effects of age, animacy, and activation order on sentence production. Language and Cognitive Processes, 21, 322353.CrossRefGoogle Scholar
Altmann, L. P. J., Lombardino, L., & Puranik, C. (2007). Sentence production in students with dyslexia. International Journal of Language and Communication Disorders, 43, 5576.CrossRefGoogle Scholar
Altmann, L. P. J., Mullin, D. A., & Mann, T. (2004). Minimal effects of order of noun activation in sentence production. Paper presented at the Psychonomic Society, Minneapolis, MN.Google Scholar
Angwin, A. J., Arnott, W. L., Copland, D. A., Haire, M. P., Murdoch, B. E., Silburn, P. A., et al. (2009). Semantic activation in Parkinson's disease patient on and off levodopa. Cortex, 45, 950959.CrossRefGoogle ScholarPubMed
Bartels, A., & Leenders, K. (2009). Parkinson's disease: The syndrome, the pathogenesis, and pathophysiology. Cortex, 45, 915921.CrossRefGoogle ScholarPubMed
Bastiaanse, R., & Leenders, K. L. (2009). Language and Parkinson's disease. Cortex, 45, 912914.CrossRefGoogle ScholarPubMed
Bayles, K. A. (1990). Language and Parkinson disease. Alzheimer's Disease and Associated Disorders, 4, 171180.CrossRefGoogle ScholarPubMed
Beatty, W. W., Staton, R. D., Weir, W. S., Monson, N., & Whitaker, H. A. (1989). Cognitive disturbances in Parkinson's disease. Journal of Geriatric Psychiatry and Neurology, 2, 2233.CrossRefGoogle ScholarPubMed
Berg, E., Björnram, C., Hartelius, L., Laakso, K., & Johnels, B. (2003). High-level language difficulties in Parkinson's disease. Clinical Linguistics and Phonetics, 17, 6380.CrossRefGoogle ScholarPubMed
Bock, K., & Levelt, W. (2002). Language production. Grammatical encoding. In Altmann, G. T. M. (Ed.), Psycholinguistics: Critical concepts in psychology (Vol. 5). London: Routledge Press.Google Scholar
Bock, K., Loebell, H., & Morey, R. (1992). From conceptual roles to structural relations: Bridging the syntactic cleft. Psychological Review, 99, 150171.CrossRefGoogle ScholarPubMed
Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M., & Nazir, T. A. (2008). Word processing in Parkinson's disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46, 743756.CrossRefGoogle Scholar
Bowen, F. P., Burns, M. M., Brady, E. M., & Yahr, M. D. (1976). A note of alterations of personal orientation in Parkinsonism. Neuropsychologia, 14, 425429.CrossRefGoogle ScholarPubMed
Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson's disease-related pathology. Cell Tissue Research, 318, 121134.CrossRefGoogle ScholarPubMed
Brown, G. G., Rahill, A. A., Gorell, J. M., McDonald, C., Brown, S. J., Sillanpaa, M., et al. (1999). Validity of the Dementia Rating Scale in assessing cognitive function in Parkinson's disease. Journal of Geriatric Psychiatry and Neurology, 12, 180188.CrossRefGoogle ScholarPubMed
Bublak, P., Muller, U., Gron, G., Reuter, M., & von Cramon, D. Y. (2002). Manipulation of working memory information is impaired in Parkinson's disease and related to working memory capacity. Neuropsychology, 16, 577590.CrossRefGoogle ScholarPubMed
Coelho, C. A. (2002). Story narratives of adults with closed head injury and non-brain-injured adults: Influence of socioeconomic status, elicitation task, and executive functioning. Journal of Speech, Language, and Hearing Research, 45, 12321248.CrossRefGoogle ScholarPubMed
Cohen, H., Bouchard, S., Scherzer, P., & Whitaker, H. (1994). Language and verbal reasoning in Parkinson's disease. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 7, 166175.Google Scholar
Colman, K. S., Koerts, J., van Beilen, M., Leenders, K. L., Post, W. J., & Bastiaanse, R. (2009). The impact of executive functions on verb production in patients with Parkinson's disease. Cortex, 45, 930942.CrossRefGoogle ScholarPubMed
Copland, D. A. (2003). The basal ganglia and semantic engagement: Potential insights from semantic priming in individuals with subcortical vascular lesions, Parkinson's disease, and cortical lesions. Journal of International Neuropsychology and Sociology, 9, 10411052.CrossRefGoogle ScholarPubMed
Copland, D. A., Chenery, H. J., & Murdoch, B. E. (2000). Understanding ambiguous words in biased sentences: Evidence of transient contextual effects in individuals with nonthalamic subcortical lesions and Parkinson's disease. Cortex, 36, 601622.CrossRefGoogle ScholarPubMed
Copland, D. A., Sefe, G., Ashley, J., Hudson, C., & Chenery, H. J. (2009). Impaired semantic inhibition during lexical ambiguity repetition in Parkinson's disease. Cortex, 45, 943949.CrossRefGoogle ScholarPubMed
Crawford, J. R., & Henry, J. D. (2004). The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43 (Pt. 3), 245265.CrossRefGoogle Scholar
Crosson, B. (1985). Subcortical functions in language: A working model. Brain and Language, 25, 257292.CrossRefGoogle Scholar
Curtis, C. E., & D'Esposito, M. (2006). Functional neuroimaging of working memory. In Cabeza, R. & Kingstone, A. (Eds.), The handbook of functional neuroimaging (2nd ed., pp. 269306). Cambridge, MA: MIT Press.Google Scholar
Cummings, J. L., Darkins, A., Mendez, M., Hill, M. A., & Benson, D. F. (1988). Alzheimer's disease and Parkinson's disease: Comparison of speech and language alterations. Neurology, 38, 680684.CrossRefGoogle ScholarPubMed
Dominey, P. F., Hoen, M., & Inui, T. (2006). A neurolinguistic model of grammatical construction processing. Journal of Cognitive Neuroscience, 18, 20882107.CrossRefGoogle ScholarPubMed
Dominey, P. F., & Inui, T. (2009). Cortico-striatal function in sentence comprehension: Insights from neurophysiology and modeling. Cortex, 45, 10121018.CrossRefGoogle ScholarPubMed
Ferreira, V. S., & Pashler, H. (2002). Central bottleneck influences on the processing stages of word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 11871199.Google ScholarPubMed
Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Science, 6, 7884.CrossRefGoogle ScholarPubMed
Friederici, A. D., & Kotz, S. A. (2003). The brain basis of syntactic processes: Functional imaging and lesion studies. NeuroImage, 20, S8S17.CrossRefGoogle ScholarPubMed
Garrett, M. F. (1982). Production of speech: Observations from normal and pathological language use. In Ellis, A. W. (Ed.), Normality and pathology in cognitive function. London: Academic Press.Google Scholar
Garrett, M. F. (1988). Processes in language production. In: Nieuwmeyer, F. J. (Ed.), Linguistics: The Cambridge survey: Vol. 3. Biological and psychological aspects of language. Cambridge, MA: Harvard University Press.Google Scholar
Gernsbacher, M. A., & Kaschak, M. P. (2003). Neuroimaging studies of language production and comprehension. Annual Review of Psychology, 54, 91114.CrossRefGoogle ScholarPubMed
Gilbert, B., Belleville, S., Bherer, L., & Chouinard, S. (2005). Study of verbal working memory in patients with Parkinson's disease. Neuropsychology, 19, 106114.CrossRefGoogle ScholarPubMed
Globus, M., Mildworf, B., & Melamed, E. (1985). Cerebral blood flow and cognitive impairment in Parkinson's disease. Neurology, 35, 11351139.CrossRefGoogle ScholarPubMed
Grossman, M., Carvell, S., Gollomp, S., Stern, M. B., Vernon, G., & Hurtig, H. I. (1991). Sentence comprehension and praxis deficits in Parkinson's disease. Neurology, 41, 16201626.Google ScholarPubMed
Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson's disease: The role of attention and memory. Brain and Language, 42, 347384.CrossRefGoogle ScholarPubMed
Grossman, M., Lee, C., Morris, J., Stern, M. B., & Hurtig, H. I. (2002). Assessing resource demands during sentence processing in Parkinson's disease. Brain and Language, 80, 603616.CrossRefGoogle ScholarPubMed
Grossman, M., Stern, M. B., Gollomp, S., Vernon, G., & Hurtig, H. I. (1994). Verb learning in Parkinson's disease. Neuropsychology, 8, 413423.CrossRefGoogle Scholar
Hagoort, P. (2005). On Broca, brain and binding: A new framework. Trends in Cogntive Sciences, 9, 416423.CrossRefGoogle Scholar
Hartsuiker, R. J., & Barkhuysen, P. N. (2006). Language production and working memory: The case of subject–verb agreement. Language and Cognitive Processes, 21, 181204.CrossRefGoogle Scholar
Henry, J. D., & Crawford, J. R. (2004). Verbal fluency deficits in Parkinson's disease: A meta-analysis. Journal of the International Neuropsychological Society, 10, 608622.CrossRefGoogle ScholarPubMed
Hochstadt, J. (2009). Set-shifting and the on-line processing of relative clauses in Parkinson's disease: Results from a novel eye-tracking method. Cortex, 45, 9911011.CrossRefGoogle ScholarPubMed
Hochstadt, J., Nakano, H., Lieberman, P., & Friedman, J. (2006). The roles of sequencing and verbal working memory in sentence comprehension deficits in Parkinson's disease. Brain and Language, 97, 243257.CrossRefGoogle ScholarPubMed
Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17, 427442.CrossRefGoogle ScholarPubMed
Hoppe, C. D., Muller, U. D., Werheid, K. D., Thone, A. D., & von Cramon, Y. D. (2000). Digit Ordering Test: Clinical, psychometric, and experimental evaluation of a verbal working memory test. Clinical Neuropsychology, 14, 3855.CrossRefGoogle ScholarPubMed
Huber, S. J., Shuttleworth, E. C., & Paulson, G. W. (1986). Dementia in Parkinson's disease. Archives of Neurology, 43, 987990.CrossRefGoogle ScholarPubMed
Illes, J. (1989). Neurolinguistic features of spontaneous language production dissociate three forms of neurodegenerative disease: Alzheimer's, Huntington's, and Parkinson's. Brain and Language, 37, 628642.CrossRefGoogle ScholarPubMed
Illes, J., Metter, E. J., Hanson, W. R., & Iritani, S. (1988). Language production in Parkinson's disease: Acoustic and linguistic considerations. Brain and Language, 33, 146160.CrossRefGoogle ScholarPubMed
Jurica, P., Leitten, C., & Mattis, S. (2001). Dementia Rating Scale: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Kemper, S., Schmalzried, R., Herman, R., Leedahl, S., & Mohankumar, D. (2008). The effects of aging and dual task demands on language production. Aging, Neuropsychology, and Cognition, 16, 241259.CrossRefGoogle ScholarPubMed
Kempler, D. (2003). Kempler Comprehension Test. Unpublished manuscript.Google Scholar
Kempler, D., Almor, A., Tyler, L., Andersen, E., & MacDonald, M. (1998). Sentence comprehension deficits in Alzheimer's disease: A comparison of off-line vs. on-line sentence processing. Brain and Language, 64, 297316.CrossRefGoogle ScholarPubMed
Kolk, H. (1995). A time-based approach to agrammatic production. Brain and Language, 50, 282303.CrossRefGoogle ScholarPubMed
Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45, 982990.CrossRefGoogle Scholar
Lees, A. J., & Smith, E. (1983). Cognitive deficits in the early stages of Parkinson's disease. Brain, 106, 257270.CrossRefGoogle ScholarPubMed
Levelt, W. J. (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.Google Scholar
Levin, B. E., Llabre, M. M., & Weiner, W. J. (1989). Cognitive impairments associated with early Parkinson's disease. Neurology, 39, 557561.CrossRefGoogle ScholarPubMed
Lewis, F. M., LaPointe, L. L., Murdoch, B. E., & Chenery, H. J. (1998). Language impairment in Parkinson's disease. Aphasiology, 12, 193206.CrossRefGoogle Scholar
Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2003). Cognitive impairments in early PD are accompanied by reductions in activity in frontostriatal neural circuitry. Journal of Neuroscience, 23, 63516356.CrossRefGoogle ScholarPubMed
Lieberman, P., Friedman, J., & Feldman, L. S. (1990). Syntax comprehension deficits in Parkinson's disease. Journal of Nervous and Mental Disease, 178, 360365.CrossRefGoogle ScholarPubMed
Lieberman, P., Kako, E., Friedman, J., Tajchman, G., Feldman, L. S., & Jiminez, E. B. (1992). Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease. Brain and Language, 43, 169189.CrossRefGoogle ScholarPubMed
Lombardi, L., & Potter, M. C. (1992). The regeneration of syntax in short term memory. Journal of Memory and Language, 31, 713733.CrossRefGoogle Scholar
Marek, A., Habets, B., Jansma, B., Nager, W., & Münte, T. (2007). Neural correlates of conceptualisation difficulty during the preparation of complex utterances. Aphasiology, 21, 11471156.CrossRefGoogle Scholar
Massman, P. J., Delis, D. C., Butters, N., Levin, B. E., & Salmon, D. P. (1990). Are all subcortical dementias alike? Verbal learning and memory in Parkinson's and Huntington's disease patients. Journal of Clinical and Experimental Neuropsychology, 12, 729744.CrossRefGoogle ScholarPubMed
Matison, R., Mayeux, R., Rosen, J., & Fahn, S. (1982). “Tip-of-the-tongue” phenomenon in Parkinson disease. Neurology, 32, 567570.CrossRefGoogle ScholarPubMed
Mega, M. S., & Alexander, M. P. (1994). Subcortical aphasia: The core profile of capsulostriatal infarction. Neurology, 44, 18241829.CrossRefGoogle ScholarPubMed
Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236250.CrossRefGoogle ScholarPubMed
Murray, L. L. (2000). Spoken language production in Huntington's and Parkinson's diseases. Journal of Speech, Language and Hearing Research, 43, 13501366.CrossRefGoogle ScholarPubMed
Murray, L. L., & Lenz, L. P. (2001). Productive syntax abilities in Huntington's and Parkinson's diseases. Brain and Cognition, 46, 213219.CrossRefGoogle ScholarPubMed
Muslimovic, D., Post, B., Speelman, J. D., & Schmand, B. (2005). Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology, 65, 12391245.CrossRefGoogle ScholarPubMed
Nadeau, S. E., & Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58, 355402, discussion 418–423.CrossRefGoogle ScholarPubMed
Natsopoulos, D., Grouios, G., Bostantzopoulou, S., Mentenopoulos, G., Katsarou, Z., & Logothetis, J. (1993). Algorithmic and heuristic strategies in comprehension of complement clauses by patients with Parkinson's disease. Neuropsychologia, 31, 951964.CrossRefGoogle ScholarPubMed
Natsopoulos, D., Katsarou, Z., Bostantzopoulou, S., Grouios, G., Mentenopoulos, G., & Logothetis, J. (1991). Strategies in comprehension of relative clauses by parkinsonian patients. Cortex, 27, 255268.CrossRefGoogle ScholarPubMed
Owen, A. (2004). Cognitive dysfunction in Parkinson's disease: The role of frontostriatal circuitry. Neuroscientist, 10, 525537.CrossRefGoogle ScholarPubMed
Peran, P., Cardebat, D., Cherubini, A., Piras, F., Luccichenti, G., Peppe, A., et al. (2009). Object naming and action-verb generation in Parkinson's disease: A fMRI study. Cortex, 45, 960971.CrossRefGoogle ScholarPubMed
Piatt, A. L., Fields, J. A., Paolo, A. M., Koller, W. C., & Troster, A. I. (1999). Lexical, semantic, and action verbal fluency in Parkinson's disease with and without dementia. Journal of Clinical and Experimental Neuropsychology, 21, 435443.CrossRefGoogle ScholarPubMed
Pirozzolo, F. J., Hansch, E. C., Mortimer, J. A., Webster, D. D., & Kuskowski, M. A. (1982). Dementia in Parkinson disease: A neuropsychological analysis. Brain and Cognition, 1, 7183.CrossRefGoogle ScholarPubMed
Potter, M. C., & Lombardi, L. (1990). Regeneration in the short-term recall of sentences. Journal of Memory and Language, 29, 633654.CrossRefGoogle Scholar
Power, M. J. (1985). Sentence production and working memory. Quarterly Journal of Experimental Psychology A, 37, 367385.CrossRefGoogle Scholar
Radanovic, M., & Scaff, M. (2003). Speech and language disturbances due to subcortical lesions. Brain and Language, 84, 337352.CrossRefGoogle ScholarPubMed
Rinne, J. O., Portin, R., Ruottinen, H., Nurmi, E., Bergman, J., Haaparanta, M., et al. (2000). Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Archives of Neurology, 57, 470475.CrossRefGoogle ScholarPubMed
Schwab, R. S., & England, A. C. J. (1969). Projection technique for evaluating surgery in Parkinson's disease. Paper presented at the Third Symposium on Parkinson's Disease, Edinburgh.Google Scholar
Small, J. A., Kemper, S., & Lyons, K. (2000). Sentence repetition and processing resources in Alzheimer's disease. Brain and Language, 75, 232258.CrossRefGoogle ScholarPubMed
Small, J. A., Lyons, K., & Kemper, S. (1997). Grammatical abilities in Parkinson's disease: Evidence from written sentences. Neuropsychologia, 35, 15711576.CrossRefGoogle ScholarPubMed
Spreen, O., & Strauss, E. (Eds.). (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York: Oxford University Press.Google Scholar
Terzi, A., Papapetropoulos, S., & Kouvelas, E. D. (2005). Past tense formation and comprehension of passive sentences in Parkinson's disease: Evidence from Greek. Brain and Language, 94, 297303.CrossRefGoogle ScholarPubMed
Ullman, M., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W., et al. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9, 171190.CrossRefGoogle ScholarPubMed
Ullmann, M. T. (2006). Is Broca's area part of the basal ganglia thalamocortical circuit? Cortex, 42, 480485.CrossRefGoogle Scholar
Vigliocco, G., & Hartsuiker, R. J. (2002). The interplay of meaning, sound, and syntax in sentence production. Psychological Bulletin, 128, 442472.CrossRefGoogle ScholarPubMed
Wallesch, C. W., & Papagno, C. (Eds.). (1988). Subcortical aphasia. London: Whurr.Google Scholar
Wechsler, D. (1987). Wechsler Adult Intelligence Scales—Revised manual. New York: Psychological Corporation.Google Scholar
Werheid, K., Hoppe, C., Thone, A., Muller, U., Mungersdorf, M., & von Cramon, D. Y. (2002). The Adaptive Digit Ordering Test: Clinical application, reliability, and validity of a verbal working memory test. Archives of Clinical Neuropsychology, 17, 547565.CrossRefGoogle ScholarPubMed