Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T23:51:34.509Z Has data issue: false hasContentIssue false

The role of linguistic experience in the hemispheric processing of lexical tone

Published online by Cambridge University Press:  23 June 2004

YUE WANG
Affiliation:
Simon Fraser University
DAWN M. BEHNE
Affiliation:
Norwegian University of Science and Technology
ALLARD JONGMAN
Affiliation:
University of Kansas
JOAN A. SERENO
Affiliation:
University of Kansas

Abstract

This study investigated hemispheric lateralization of Mandarin tone. Four groups of listeners were examined: native Mandarin listeners, English–Mandarin bilinguals, Norwegian listeners with experience with Norwegian tone, and American listeners with no tone experience. Tone pairs were dichotically presented and listeners identified which tone they heard in each ear. For the Mandarin listeners, 57% of the total errors occurred in the left ear, indicating a right-ear (left-hemisphere) advantage. The English–Mandarin bilinguals exhibited nativelike patterns, with 56% left-ear errors. However, no ear advantage was found for the Norwegian or American listeners (48 and 47% left-ear errors, respectively). Results indicate left-hemisphere dominance of Mandarin tone by native and proficient bilingual listeners, whereas nonnative listeners show no evidence of lateralization, regardless of their familiarity with lexical tone.

Type
Articles
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albanese J. F. 1985. Language lateralization in English–French bilinguals. Brain and Language, 24, 284296.Google Scholar
Baum S. R., & Pell M. D. 1999. The neural bases of prosody: Insights from lesion studies and neuroimaging. Aphasiology, 13, 581608.Google Scholar
Berry I., Manelfe C., Mueller E., Franconi J. M., Boulanouar K., Demonet J. F., Chollet F., Rascol O., & Clanet M. 1996. Functional magnetic resonance of motor and verbal tasks. In L. Heuser & M. Oudkerk (Eds.), Advances in MRI (pp. 2733). Berlin: Blackwell Science.
Best C. T., & Avery R. A. 1999. Left-hemisphere advantage for click consonants is determined by linguistic significance and experience. Psychological Science, 10, 6570.Google Scholar
Blumstein S., & Cooper W. 1974. Hemispheric processing of intonation contours. Cortex, 10, 146158.Google Scholar
Bryden M. P. 1988. An overview of the dichotic listening procedure and its relation to cerebral organization. In K. Hugdahl (Ed.), Handbook of dichotic listening: Theory, methods and research. Chichester, UK: Wiley.
Bryden M. P., & Murray J. E. 1985. Toward a model of dichotic listening performance. Brain and Cognition, 4, 241257.Google Scholar
Buchanan T., Lutz K., Mirzazade S., Specht K., Shah N., Zilles K., & Jäncke L. 2000. Recognition of emotional prosody and verbal components of spoken language: An fMRI study. Cognitive Brain Research, 9, 227238.Google Scholar
Carrol D. W. 1994. Psychology of language. Pacific Grove, CA: Brooks/Cole.
Chiarello C. 1991. Interaction of word meanings by the cerebral hemisphere: One is not enough. In P. J. Schwanenflugel (Ed.), The psychology of word meaning (pp. 251278). Hillsdale, NJ: Erlbaum.
Curry F. K. W. 1967. A comparison of left-handed and right-handed subjects on verbal and non-verbal dichotic listening tasks. Cortex, 3, 343352.Google Scholar
Cutting J. E. 1974. Two left-hemisphere mechanisms in speech perception. Perception and Psychophysics, 16, 601612.Google Scholar
Dwyer J., Blumstein S. E., & Ryalls J. 1982. The role of duration and rapid temporal processing on the lateral perception of consonants and vowels. Brain and Language, 17, 272286.Google Scholar
Emmorey K. 1987. The neurological substrates for prosodic aspects of speech. Brain and Language, 30, 305320.Google Scholar
Evans J., Workman L., Mayer P., & Crowley K. 2002. Differential bilingual laterality: Mythical monster found in Wales. Brain and Language, 83, 291299.Google Scholar
Fintoft K. 1970. Acoustical analysis and perception of tonemes in some Norwegian dialects. Oslo: Universitetsforlaget.
Gandour J., & Dardarananda R. 1983. Identification of tonal contrasts in Thai aphasic patients. Brain and Language, 18, 98114.Google Scholar
Gandour J., Petty S. H., & Dardarananda R. 1988. Perception and production of tone in aphasia. Brain and Language, 35, 201240.Google Scholar
Gandour J., Dzemidzic M., Wong D., Lowe M., Tong Y., Hsieh L., Satthamnuwong N., & Lurito J. 2003. Temporal integration of speech prosody is shaped by language experience: An fMRI study. Brain and Language, 84, 318336.Google Scholar
Gandour J., Wong D., Hsieh L., Weinzapfel B., Van Lancker D., & Hutchins G. D. 2000. A crosslinguistic PET study of tone perception. Journal of Cognitive Neuroscience, 12, 207222.Google Scholar
Gandour J., Wong D., Lowe M., Dzemidzic M., Satthamnuwong N., Tong Y., & Li X. 2002. A cross-linguistic fMRI study of spectral and temporal cues underlying phonological processing. Journal of Cognitive Neuroscience, 14, 10761087.Google Scholar
Goodglass H., & Calderon M. 1977. Parallel processing of verbal and musical stimuli in right and left hemispheres. Neuropsychologia, 15, 397.Google Scholar
Ke C. 1992. Dichotic listening with Chinese and English tasks. Journal of Psycholinguistic Research, 21, 463471.Google Scholar
Kimura D. 1964. Left–right differences in the perception of melodies. Quarterly Journal of Experimental Psychology, 16, 335358.Google Scholar
Kimura D. 1967. Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163168.Google Scholar
Klein D., Zatorre R. J., Milner B., & Zhao V. 2001. A cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers. Neuroimage, 13, 646653.Google Scholar
Kristoffersen G. 2000. The phonology of Norwegian. Oxford: Oxford University Press.
Lehiste I. 1970. Suprasegmentals. Cambridge, MA: MIT Press.
Mazzucchi A., Parma M., & Cattelani R. 1981. Hemispheric dominance in the perception of tonal sequences in relation to sex, musical competence and handedness. Cortex, 17, 291302.Google Scholar
Mertus J. 1989. BLISS manual. Brown University, Providence, RI.
Mildner V. 1999. Functional cerebral asymmetry for verbal stimuli in a foreign language. Brain and Cognition, 40, 197201.Google Scholar
Moen I. 1993. Functional lateralization of the perception of Norwegian word tones—Evidence from a dichotic listening experiment. Brain and Language, 44, 400413.Google Scholar
Naeser M. A., & Chan S. W. C. 1980. Case study of a Chinese aphasic with the Boston diagnostic aphasia exam. Neuropsychologia, 18, 389410.Google Scholar
Oldfield R. C. 1971. The assessment and analysis of handedness: The Edinbourgh inventory. Neuropsychologia, 9, 97113.Google Scholar
Packard J. L. 1986. Tone production deficits in nonfluent aphasic Chinese speech. Brain and Language, 29, 212223.Google Scholar
Perani D., Paulesu E., Sebastian Galles N., Dupoux E., Dehaene S., Bettinardi V., Cappa S. F., Fazio F., & Mehler J. 1998. The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.Google Scholar
Robin D., Tranel D., & Damasio H. 1990. Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions. Brain and Language, 39, 539555.Google Scholar
Ryalls J., & Reinvang I. 1986. Functional lateralization of linguistic tones: Acoustic evidence from Norwegian. Language and Speech, 29, 389398.Google Scholar
Schouten M. E. H., van Dalen T. E., & Klein A. J. J. 1985. Ear advantage and second language proficiency. Journal of Phonetics, 13, 5360.Google Scholar
Shankweiler D., & Studdert–Kennedy M. 1967. Identification of consonants and vowels presented to left and right ears. Quarterly Journal of Experimental Psychology, 19, 5963.Google Scholar
Soares C. 1982. Converging evidence for left hemisphere language lateralization in bilinguals. Neuropsychologia, 20, 653659.Google Scholar
Soares C. 1984. Left-hemisphere language lateralization in bilinguals: Use of the concurrent activities paradigm. Brain and Language, 23, 8696.Google Scholar
Soares C., & Grosjean F. 1981. Left hemisphere language lateralization in bilinguals and monolinguals. Perception and Psychophysics, 29, 599604.Google Scholar
Studdert–Kennedy M., & Shankweiler D. 1970. Hemispheric specialization for speech perception. Journal of the Acoustical Society of America, 48, 579594.Google Scholar
Sussman H. M., Franklin P., & Simon T. 1982. Bilingual speech: Bilingual control? Brain and Language, 15, 125142.Google Scholar
Van Lancker D. 1980. Cerebral lateralization of pitch cues in the linguistic signal. Papers in Linguistics: International Journal of Human Communication, 13, 201277.Google Scholar
Van Lancker D., & Fromkin V. A. 1973. Hemispheric specialization for pitch and “tone”: Evidence from Thai. Journal of Phonetics, 1, 101109.Google Scholar
Van Lancker D., & Fromkin V. A. 1978. Cerebral dominance for pitch contrasts in tone language speakers and in musically untrained and trained English speakers. Journal of Phonetics, 6, 1923.Google Scholar
Wang Y., Jongman A., & Sereno J. A. 2001. Dichotic perception of Mandarin tones by Chinese and American listeners. Brain and Language, 78, 332348.Google Scholar
Wang Y., Sereno J.A., Jongman A., & Hirsch J. 2003. fMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15, 10191027.Google Scholar
Wong P. C. M. 2002. Hemispheric specialization of linguistic pitch patterns. Brain Research Bulletin, 59, 8395.Google Scholar
Wuillemin D., & Richardson B. 1994. Right hemisphere involvement in processing later-learned languages in multilinguals. Brain and Language, 46, 620636.Google Scholar
Zatorre R. J., Evans A. C., Meyer E., & Gjedde A. 1992. Lateralization of phonetic and pitch discrimination in speech processing. Science, 256, 846849.Google Scholar