Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T19:26:48.297Z Has data issue: false hasContentIssue false

Reading minds in motion: Mouse tracking reveals transposed-character effects in Chinese compound word recognition

Published online by Cambridge University Press:  28 August 2020

Yu-Cheng Lin*
Affiliation:
University of Texas Rio Grande Valley
Pei-Ying Lin
Affiliation:
University of Saskatchewan
*
*Corresponding author. Email: [email protected]

Abstract

This study investigated the development of character transposition effects during Chinese compound word recognition via computer mouse movements instead of the conventional key presses. Empirical evidence to reveal the impacts of vocabulary knowledge, grade level, and whole word frequency on Chinese transposed-character effect is lacking. In the present study, we measured the transposed-character effect in two groups of Taiwanese children (second and fourth graders) in a mouse-tracking lexical-decision task including nonwords derived from real words by transposing two characters (e.g., “習學” from “學習” [learning]) and control nonwords in which two characters are replaced (e.g., “以修”). Our results indicate that participants showed longer mouse movement times and larger spatial attraction in recognizing transposed-character nonwords than in replaced-character nonwords, suggesting that the dominant role of whole-word representation in processing Chinese compound words. Our results also further demonstrate that how the degree of character transposition was affected by vocabulary knowledge, grade level, and word frequency.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, J., & Perea, M. (2008). The effects of length and transposed‐letter similarity in lexical decision: Evidence with beginning, intermediate, and adult readers. British Journal of Psychology, 99, 245264. doi:10.1348/000712607X224478 CrossRefGoogle ScholarPubMed
Anderson, S. E., Farmer, T. A., Goldstein, M., Schwade, J., & Spivey, M. (2011). Individual differences in measures of linguistic experience account for variability in the sentence processing skill of five-year-olds. In Arnon, I. & Clark, E. V. (Eds.). Experience, variation, and generalization: Learning a first language (pp. 203221). Amsterdam: Benjamins.10.1075/tilar.7.12andCrossRefGoogle Scholar
Andrew, S. (1996). Lexical retrieval and selection processes: Effects of transposed-letter confusability. Journal of Memory and Language, 35, 775800. doi:10.1006/jmla.1996.0040 CrossRefGoogle Scholar
Andrews, S., & Lo, S. (2013). Is morphological priming stronger for transparent than opaque words? It depends on individual differences in spelling and vocabulary. Journal of Memory and Language, 68, 279296. doi:10.1080/17470218.2014.1003949 CrossRefGoogle Scholar
Bai, C., Cai, S., & Schumacher, P. B. (2011). Reversibility in Chinese word formation influences target identification. Neuroscience Letters, 499, 1418. doi:10.1016/j.neulet.2011.05.020 CrossRefGoogle ScholarPubMed
Barca, L., & Pezzulo, G. (2012). Unfolding visual lexical decision in time. PLoS ONE, 7, e35932. doi:10.1371/journal.pone.0035932 CrossRefGoogle ScholarPubMed
Barca, L., & Pezzulo, G. (2015). Tracking second thoughts: Continuous and discrete revision processes during visual lexical decision. PLoS ONE, 10, e0116193. doi:10.1371/journal.pone.0116193 CrossRefGoogle ScholarPubMed
Barca, L., Pezzulo, G., Ouellet, M., & Ferrand, L. (2017). Dynamic lexical decisions in French: Evidence for a feedback inconsistency effect. Acta psychologica, 180, 2332. doi:10.1016/j.actpsy.2017.08.005 CrossRefGoogle ScholarPubMed
Bates, D., & DebRoy, S. (2004). Linear mixed models and penalized least squares. Journal of Multivariate Analysis, 91, 117. doi:10.1016/j.jmva.2004.04.013 CrossRefGoogle Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. doi:10.18637/jss.v067.i01 CrossRefGoogle Scholar
Cargill, S. A., Farmer, T. A., Schwade, J. A., Goldstein, M. H., & Spivey, M. J. (2007). Children’s online processing of complex sentences: New evidence from a new technique. Proceedings of the 29th Annual Conference of the Cognitive Science Society (pp. 143–148), Mahwah, NJ: Erlbaum.Google Scholar
Castles, A., Davis, C., Cavalot, P., & Forster, K. (2007). Tracking the acquisition of orthographic skills in developing readers (pp. 23–24). doi:10.1080/00049530701658626 CrossRefGoogle Scholar
Castles, A., Davis, C., & Forster, K. I. (2003). Word recognition development in children: Insights from masked priming. In Kinoshita, S. & Lupker, S. (Eds.), Masked priming: The state of the art (pp. 345360). Hove, UK: Psychology Press.Google Scholar
Castles, A., Davis, C., & Letcher, T. (1999). Neighborhood effects on masked form-priming in developing readers. Language and Cognitive Processes, 14, 201224. doi:10.1080/016909699386347 CrossRefGoogle Scholar
Cheng, C. M. (1981). Perception of Chinese characters. Acta Psychologica Taiwanica, 23, 137153.Google Scholar
Dale, R., & Duran, N. D. (2011). The cognitive dynamics of negated sentence verification. Cognitive Science, 35, 983996. doi:10.1111/j.1551-6709.2010.01164.x CrossRefGoogle ScholarPubMed
De Rosario-Martínez, H. (2015). phia: Post-Hoc Interaction Analysis. Retrieved from http://CRAN.R-project.org/paclage=phia Google Scholar
De Zeeuw, M., Schreuder, R., & Verhoeven, L. (2015). Lexical processing of nominal compounds in first- and second-language learners across primary grades. Writing Systems Research, 7, 133156. doi:10.1080/17586801.2014.926806 CrossRefGoogle Scholar
Erb, C. D. (2018). The developing mind in action: Measuring manual dynamics in childhood. Journal of Cognition and Development, 19, 233247. doi:10.1080/15248372.2018.1454449 CrossRefGoogle Scholar
Erb, C. D., Moher, J., Sobel, D. M., & Song, J. H. (2016). Reach tracking reveals dissociable processes underlying cognitive control. Cognition, 152, 114126. doi:10.1016/j.cognition.2016.03.015 CrossRefGoogle ScholarPubMed
Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods, 42, 226241. doi:10.3758/BRM.42.1.226 CrossRefGoogle ScholarPubMed
Giraudo, H., & Dal Maso, S. (2016). The salience of complex words and their parts: Which comes first? Frontiers in Psychology, 7, 1778. doi:10.3389/fpsyg.2016.01778 CrossRefGoogle ScholarPubMed
Häikiö, T., Bertram, R., & Hyönä, J. (2011). The development of whole-word representations in compound word processing: Evidence from eye fixation patterns of elementary school children. Applied Psycholinguistics, 32, 533551. doi:10.1017/S0142716411000208 CrossRefGoogle Scholar
Hasenäcker, J., & Schroeder, S. (2019). Compound reading in German: Effects of constituent frequency and whole-word frequency in children and adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45, 920933. doi:10.1037/xlm0000623 Google ScholarPubMed
Hasenäcker, J., Schröter, P., & Schroeder, S. (2017). Investigating developmental trajectories of morphemes as reading units in German. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 10931108. doi:10.1037/xlm0000353 Google ScholarPubMed
Hermens, F. (2018). When do arrows start to compete? A developmental mouse-tracking study. Acta Psychologica, 182, 177188. doi:10.1016/j.actpsy.2017.11.015 CrossRefGoogle ScholarPubMed
Huang, H. S. (2001). The Chinese character recognition test for school-age children Taipei, Taiwan: Psychology Publishing.Google Scholar
Joseph, H. S. S. L., Nation, K., & Liversedge, S. P. (2013). Using eye movements to investigate word frequency effects in children’s sentence reading. School Psychology Review, 42, 207222.CrossRefGoogle Scholar
Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103, 5469. doi:10.1037/a0028347 CrossRefGoogle ScholarPubMed
Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983997. doi:10.2307/2533558 CrossRefGoogle ScholarPubMed
Krueger, B. I., Storkel, H. L., & Minai, U. (2018). The influence of misarticulations on children’s word identification and processing. Journal of Speech, Language, and Hearing Research, 61, 820836. doi:10.1044/2017_JSLHR-S-16-0379 CrossRefGoogle Scholar
Lau, K.-Y (2012). Compound word processing: Development and disorder. Unpublished doctoral dissertation, University of Hong Kong, Hong Kong, China.Google Scholar
Leung, M. T., & Lee, A. W. Y. (2002). The Hong Kong corpus of primary school Chinese. Paper presented at the 9th Meeting of the International Clinical Phonetics and Linguistics Association, Hong Kong.Google Scholar
Li, X., Rayner, K., & Cave, K. R. (2009). On the segmentation of Chinese words during reading. Cognitive Psychology, 58, 525552. doi:10.1016/j.cogpsych.2009.02.003 CrossRefGoogle ScholarPubMed
Lin, Y. C., Bangert, A. S., & Schwartz, A. I. (2015). The devil is in the details of hand movement: Visualizing transposed-letter effects in bilingual minds. The Mental Lexicon, 10, 364389. doi:10.1075/ml.10.3.03lin CrossRefGoogle Scholar
Lin, Y. C., & Lin, P. Y. (2016). Mouse tracking traces the “Camrbidge Unievrsity” effects immonolingual and bilingual minds. Acta Psychologica, 167, 5262. doi:10.1016/j.actpsy.2016.04.001 CrossRefGoogle ScholarPubMed
Liu, P. D., Chung, K. K. H., McBride-Chang, C., & Tong, X. (2010). Holistic versus analytic processing: Evidence for a different approach to processing of Chinese at the word and character levels in Chinese children. Journal of Experimental Child Psychology, 107, 466478. doi:10.1016/j.jecp.2010.06.006 CrossRefGoogle ScholarPubMed
Liu, D., Chung, K. K. H., Zhang, Y., & Lu, Z. (2014). Sensitivity to the positional information of morphemes inside Chinese compound words and its relationship with word reading. Reading and Writing, 27, 431450. doi:10.1007/s11145-013-9451-6 CrossRefGoogle Scholar
Lu, L., & Liu, H. S. (1998). The Peabody Picture Vocabulary Test–Revised in Chinese. Taipei: Psychological Publishing.Google Scholar
Mattingly, I. G., & Xu, Y. (1994). Word superiority in Chinese. In Chang, H-W., Huang, J-T., Hue, C-W., & Tzeng, O. J. L. (Eds.), Advances in the study of Chinese language processing: Vol I. Selected writing from the 6th international symposium on cognitive aspects of the Chinese language (pp. 101111). Taipei: Department of Psychology, National Taiwan University.Google Scholar
Ministry of Education. (2002). A list of commonly used characters and words for Taiwanese elementary school students. Taipei, Taiwan: Author.Google Scholar
O’Connor, R. E., & Forster, K. I. (1981). Criterion bias and search sequence bias in word recognition. Memory and Cognition, 9, 7892.CrossRefGoogle ScholarPubMed
Peng, D., Ding, G., Wang, C., Taft, M., & Zhu, X. (1999). Chinese reversible word’s processing: The role of morpheme on word processing. Acta Psychological Sinica, 31, 3646.Google Scholar
Perea, M., & Lupker, S. J. (2003). Does jugde activate COURT? Transposed-letter confusability effects in masked associative priming. Memory and Cognition, 31, 829841. doi:10.3758/BF03196438 CrossRefGoogle Scholar
Perea, M., & Lupker, S. J. (2004). Can CANISO activate CASINO? Transposed-letter similarity effects with nonadjacent letter positions. Journal of Memory and Language, 51, 231246. doi:10.1016/j.jml.2004.05.005 CrossRefGoogle Scholar
Perea, M., Rosa, E., & Gómez, C. (2005). The frequency effect for pseudowords in the lexical decision task. Perception and Psychophysics, 67, 301314. doi:10.3758/BF03206493 CrossRefGoogle ScholarPubMed
R Core Team. (2015). R: A language and environment for statistical computing (Version 3.2.2). Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/ Google Scholar
Santens, S., & Verguts, T. (2011). The size congruity effect: Is bigger always more? Cognition, 118, 94110. doi:10.1016/j.cognition.2010.10.014 CrossRefGoogle ScholarPubMed
Schroeder, S., & Verrel, J. (2014). Cognitive processing and motor execution in the lexical decision task: A developmental study. Psychonomic Bulletin & Review, 21, 496504. doi:10.3758/s13423-013-0509-x CrossRefGoogle ScholarPubMed
Singmann, H., Bolker, B., & Westfall, J. (2015). afex: Analysis of factorial experiments. R package, version 0.14-2.Google Scholar
Taft, M. (2004). Morphological decomposition and the reverse base frequency effect. Quarterly Journal of Experimental Psychology, 57, 745765. doi:10.1080/02724980343000477 CrossRefGoogle ScholarPubMed
Taft, M., Zhu, X, & Peng, D. (1999). Positional specificity of radicals in Chinese character recognition. Journal of Memory and Language, 40, 498519. doi:10.1006/jmla.1998.2625 CrossRefGoogle Scholar
Tomlinson, J. M., Bailey, T. M., & Bott, L. (2013). Possibly all of that and then some: Scalar implicatures are understood in two steps. Journal of Memory and Language, 69, 1835. doi:10.1016/j.jml.2013.02.003 CrossRefGoogle Scholar
Tse, C. S., Yap, M. J., Chan, Y. L., Sze, W. P., Shaoul, C., & Lin, D. (2017). The Chinese Lexicon Project: A megastudy of lexical decision performance for 25,000+ traditional Chinese two-character compound words. Behavior Research Methods, 49, 15031519. doi:10.3758/s13428-016-0810-5 CrossRefGoogle ScholarPubMed
Vergara-Martinez, M., Perea, M., Gómez, P., & Swaab, T. Y. (2013). ERP correlates of letter identity and letter position are modulated by lexical frequency. Brain and Language, 125, 1127.CrossRefGoogle ScholarPubMed
Wang, Y., & McBride, C. (2016). Character reading and word reading in Chinese: unique correlates for Chinese kindergarteners. Applied Psycholinguistics, 37, 371386. doi:10.1017/S014271641500003X CrossRefGoogle Scholar
White, S. J., Johnson, R. L., Liversedge, S. P., & Rayner, K. (2008). Eye movements when reading transposed text: The importance of word beginning letters. Journal of Experimental Psychology: Human Perception and Performance, 34, 12611276. doi:10.1037/0096-1523.34.5.1261 Google ScholarPubMed
Zhou, X., & Marslen-Wilson, W. (1995). Morphological structure in the Chinese mental lexicon. Language and Cognitive Processes, 10, 545600.CrossRefGoogle Scholar