Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:47:23.923Z Has data issue: false hasContentIssue false

Perception of long-distance coarticulation: An event-related potential and behavioral study

Published online by Cambridge University Press:  15 April 2011

MICHAEL GROSVALD*
Affiliation:
University of California at Davis
DAVID CORINA
Affiliation:
University of California at Davis
*
ADDRESS FOR CORRESPONDENCE Michael Grosvald, Center for Mind and Brain, University of California at Davis, 267 Cousteau Place, Davis, CA 95618. E-mail: [email protected]

Abstract

In this study we explore listeners' sensitivity to vowel to vowel (VV) coarticulation, using both event-related potential (ERP) and behavioral methodologies. The stimuli used were vowels “colored” by the coarticulatory influence of other vowels across one, three or five intervening segments. The paradigm used in the ERP portion of the study was intended to elicit the mismatch-negativity (MMN) component, a negative deflection typically seen at central midline scalp sites about 200 ms after the presentation of a “deviant” acoustic stimulus occurring among a train of “standard” acoustic stimuli. VV coarticulation at near and medium distances was associated with significant MMN-like effects, which however were not observed in response to the longest distance coarticulatory contrasts. Subjects' ERP results did not predict their performance on the behavioral task, which found evidence of listener sensitivity to even the furthest distance coarticulatory effects. Although the MMN has previously been shown to be sensitive to phonemic contrasts, this is the first study using ERP methodology to investigate the subphonemic processing associated with the perception of coarticulation.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aaltonen, O., Eerola, O., Lang, A. H., Uusipaikka, E., Tuomainen, J. (1994). Automatic discrimination of phonetically relevant and irrelevant vowel parameters as reflected by mismatch negativity. Journal of the Acoustical Society of America, 96, 14891493.CrossRefGoogle ScholarPubMed
Abry, C., & Lallouache, M. T. (1995). Le MEM: Un modèle d'anticipation paramétrable par locuteur: Données sur l'arrondissement en français. Bulletin du Laboratoire de la Communication Parlée, 3, 8599.Google Scholar
Alain, C., & Izenberg, A. (2003). Effects of attentional load on auditory scene analysis. Journal of Cognitive Neuroscience, 15, 10631073.CrossRefGoogle ScholarPubMed
Alfonso, P. J., & Baer, T. (1982). Dynamics of vowel articulation. Language and Speech, 25, 151173.CrossRefGoogle Scholar
Alho, K., Woods, D. L., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention II: Effects of attentional load on processing auditory and visual stimuli in central space. Electroencephalography and Clinical Neurophysiology, 82, 356368.CrossRefGoogle ScholarPubMed
Beddor, P. S., Harnsberger, J. D., & Lindemann, S. (2002). Language-specific patterns of vowel-to-vowel coarticulation: Acoustic structures and their perceptual correlates. Journal of Phonetics, 20, 591627.CrossRefGoogle Scholar
Bell-Berti, F., and Harris, K. S. (1981). A temporal model of speech production. Phonetica, 38, 920.CrossRefGoogle ScholarPubMed
Boersma, P., & Weenink, D. (2005). Praat: Doing phonetics by computer [Computer software]. Retrieved from http://www.praat.orgGoogle Scholar
Boyce, S. E. (1990). Coarticulatory organization for lip rounding in Turkish and English. Journal of the Acoustical Society of America, 88, 25842595.CrossRefGoogle ScholarPubMed
Browman, C., & Goldstein, L. (1992). “Targetless” schwa: An articulatory analysis. In Docherty, G. J. & Ladd, R. (Eds.), Papers in laboratory phonology II. Gesture, segment, prosody (pp. 2656). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Celsis, P., Boulanouar, K., Doyon, B., Ranjeva, J. P., Berry, I., Nespoulous, J. L., et al. (1999). Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. NeuroImage, 9, 135144.CrossRefGoogle ScholarPubMed
Cho, T. (1999). Effect of prosody on vowel-to-vowel coarticulation in English. In Ohala, J. J., Hasegawa, Y., Ohala, M., Granville, D., & Bailey, A. C. (Eds.), Proceedings of the 14th International Congress of Phonetic Sciences (pp. 459462). San Francisco, CA: University of California.Google Scholar
Cho, T. (2004). Prosodically conditioned strengthening and vowel-to-vowel coarticulation in English. Journal of Phonetics, 32, 141176.CrossRefGoogle Scholar
Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York: Harper & Row.Google Scholar
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [Computer software]. Journal of Neuroscience Methods, 134, 921.CrossRefGoogle ScholarPubMed
Farnetani, E., & Recasens, D. (1999). Coarticulation models in recent speech production theories. In Hardcastle, W. J. & Hewlett, N. (Eds.), Coarticulation: Theory, data and techniques (pp. 3165). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fletcher, J. (2004). An EMA/EPG study of vowel-to-vowel articulation across velars in Southern British English. Clinical Linguistics & Phonetics, 18, 577592.CrossRefGoogle ScholarPubMed
Fowler, C. A. (1980). Coarticulation and theories of extrinsic timing. Journal of Phonetics, 8, 113133.CrossRefGoogle Scholar
Fowler, C. A. (1981). Production and perception of coarticulation among stressed and unstressed vowels. Journal of Speech and Hearing Research, 24, 127139.CrossRefGoogle ScholarPubMed
Fowler, C. A. (1983). Converging sources of evidence on spoken and perceived rhythms in speech: Cyclic productions of vowels in monosyllabic stress feet. Journal of Experimental Psychology: General, 112, 386412.CrossRefGoogle ScholarPubMed
Fowler, C. A., & Saltzman, E. (1993). Coordination and coarticulation in speech production. Language and Speech, 36, 171195.CrossRefGoogle ScholarPubMed
Frenck-Mestre, C., Meunier, C., Espesser, R., Daffner, K., & Holcomb, P. (2005). Perceiving nonnative vowels: The effect of context on perception as evidenced by event-related brain potentials. Journal of Speech, Language, and Hearing Research, 48, 115.CrossRefGoogle ScholarPubMed
Garrido, M., Kilner, J., Stephan, K., & Friston, K. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120, 453463.CrossRefGoogle ScholarPubMed
Gay, T. (1977). Articulatory movements in VCV sequences. Journal of the Acoustical Society of America, 62, 183193.CrossRefGoogle ScholarPubMed
Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27, 627640.CrossRefGoogle ScholarPubMed
Gomot, M., Giard, M.-H., Roux, S., Barthelemy, C., & Bruneau, N. (2000). Maturation of frontal and temporal components of mismatch negativity (MMN) in children. NeuroReport, 14, 31093112.CrossRefGoogle Scholar
Gourevitch, V., & Galanter, E. (1967). A significance test for one-parameter isosensitivity functions. Psychometrika, 32, 2533.Google ScholarPubMed
Grosvald, M. (2009). Interspeaker variation in the extent and perception of long-distance vowel-to-vowel coarticulation. Journal of Phonetics, 37, 173188.CrossRefGoogle Scholar
Grosvald, M., & Orgun, C. O. (2009, January). The role of the listener in sound change and the production and perception of sub-phonemic vowel contrasts. Paper presented at the 7th Hawaii International Conference on Arts and Humanities, Honolulu.Google Scholar
Hardcastle, W. J., & Hewlett, N. (1999). Coarticulation: Theory, data and techniques. Cambridge: Cambridge University Press.Google Scholar
Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., et al. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neuroscience Letters, 50, 127132.CrossRefGoogle Scholar
Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., et al. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Science of the United States of America, 101, 68096814.CrossRefGoogle ScholarPubMed
Keating, P. (1988). Underspecification in phonetics. Phonology, 5, 275292.CrossRefGoogle Scholar
Keating, P. (1990a). Phonetic representations in a generative grammar. Journal of Phonetics, 18, 321334.CrossRefGoogle Scholar
Keating, P. (1990b). The window model of coarticulation: Articulatory evidence. In Kingston, J. & Beckman, M. E. (Eds.), Papers in laboratory phonetics I: Between the grammar and the physics of speech (pp. 451470). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kekoni, J., Hämäläinen, H., Saarinen, M., Gröhn, J., Reinikainen, K., Lehtokoski, A., et al. (1997). Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biological Psychology, 46, 125142.CrossRefGoogle ScholarPubMed
Kozhevnikov, V., & Chistovich, L. (1965). Speech: Articulation and perception (Translation 30, p. 543). Washington, DC: Joint Publications Research Service.Google Scholar
Krauel, K., Schott, P., Sojka, B., Pause, B. M., & Ferstl, R. (1999). Is there a mismatch negativity analogue in the olfactory event-related potential? Journal of Psychophysiology, 13, 4955.CrossRefGoogle Scholar
Kraus, N., Koch, D., McGee, T., Nicol, T. G., & Cunningham, J. (1999). Speech–sound discrimination in school-age children: Psychophysical and neurophysiologic measures. Journal of Speech, Language, and Hearing Research, 42, 10421060.CrossRefGoogle ScholarPubMed
Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biological Psychology, 74, 119.CrossRefGoogle ScholarPubMed
Lang, H., Eerola, O., Korpilahti, P., Holopainen, I. E., Salo, S. K., & Aaltonen, O. (1995). Practical issues in the clinical application of mismatch negativity. Ear and Hearing, 16, 118130.CrossRefGoogle ScholarPubMed
Lang, H., Nyrke, T., Ek, M., Aaltonen, O., Raimo, I., & Näätänen, R. (1990). Pitch discrimination performance and auditory event-related potentials. In Brunia, C. H. M., Gaillard, A. W. K., Kok, A., Mulder, G., & Verbaten, M. N. (Eds.), Psychophysiological brain research (Vol. 1, pp. 294298). Tilburg, The Netherlands: Tilburg University Press.Google Scholar
Lehiste, I., & Shockey, L. (1972). On the perception of coarticulation effects in English VCV syllables. Journal of Speech and Hearing Research, 15, 500506.CrossRefGoogle ScholarPubMed
Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user's guide. New York: Cambridge University Press.Google Scholar
Magen, H. S. (1997). The extent of vowel-to-vowel coarticulation in English. Journal of Phonetics, 25, 187205.CrossRefGoogle Scholar
Manuel, S. Y. (1990). The role of contrast in limiting vowel-to-vowel coarticulation in different languages. Haskins Laboratories Status Report on Speech Research, 103–104, 120.Google Scholar
Manuel, S. Y., & Krakow, R. A. (1984). Universal and language particular aspects of vowel-to-vowel coarticulation. Haskins Laboratories Status Report on Speech Research, 77–78, 6978.Google Scholar
Martin, J. G., & Bunnell, H. T. (1982). Perception of anticipatory coarticulation effects in vowel-stop consonant–vowel sequences. Journal of Experimental Psychology: Human Perception and Performance, 8, 473488.Google Scholar
McLaughlin, J., Osterhout, L., & Kim, A. (2004). Neural correlates of second-language word learning: Minimal instruction produces rapid change. Nature Neuroscience, 7, 703704.CrossRefGoogle ScholarPubMed
Näätänen, R. (1979). Orienting and evoked potentials. In Kimmel, H. D., van Olst, E. H., & Orlebeke, J. F. (Eds.), The orienting reflex in humans (pp. 6175). Hillsdale, NJ: Erlbaum.Google Scholar
Näätänen, R. (1985). Selective attention and stimulus processing: Reflections in event-related potentials, magnetoencephalogram, and regional cerebral blood flow. In Posner, M. I. & Marin, O. S. M. (Eds.), Attention and performance 1985 (Vol. 11, pp. 355373). Hillsdale, NJ: Erlbaum.Google Scholar
Näätänen, R. (1991). Mismatch negativity (MMN) outside strong attentional focus: A commentary on Woldorff et al. Psychophysiology, 28, 478484.CrossRefGoogle ScholarPubMed
Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum.Google Scholar
Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity and its magnetic equivalent. Psychophysiology, 38, 121.CrossRefGoogle ScholarPubMed
Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313329.CrossRefGoogle ScholarPubMed
Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385, 432434.CrossRefGoogle ScholarPubMed
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 25442590.CrossRefGoogle ScholarPubMed
Ohala, J. (1981). The listener as a source of sound change. In Miller, M. F. (Ed.), Papers from the parasession on language behavior. Chicago: Chicago Linguistic Association.Google Scholar
Ohala, J. (1994). Towards a universal, phonetically-based, theory of vowel harmony. Paper presented at the Third International Conference on Spoken Language Processing (ICSLP 94), Yokohama, Japan, September 18–24. Retrieved from http://www.isca-speech.org/archive/icslp_1994CrossRefGoogle Scholar
Öhman, S. E. G. (1966). Coarticulation in VCV utterances: Spectrographic measurements. Journal of the Acoustical Society of America, 39, 151168.CrossRefGoogle ScholarPubMed
Öhman, S. E. G. (1967). Numerical model of coarticulation. Journal of the Acoustical Society of America, 41, 310320.CrossRefGoogle ScholarPubMed
Osterhout, L., Poliakov, A., Inoue, K., McLaughlin, J., Valentine, G., Pitkanen, I., et al. (2008). Second-language learning and changes in the brain. Journal of Neurolinguistics, 21, 509521.CrossRefGoogle ScholarPubMed
Perkell, J. S., & Chiang, C. M. (1986). Preliminary support for a “hybrid model” of anticipatory coarticulation. Paper presented at the 12th International Conference of Acoustics.Google Scholar
Przezdziecki, M. (2000). Vowel harmony and vowel-to-vowel coarticulation in three dialects of Yoruba. Working Papers of the Cornell Phonetics Laboratory, 13, 105124.Google Scholar
Recasens, D. (1989). Long range coarticulation effects for tongue dorsum contact in VCVCV sequences. Speech Communication, 8, 293307.CrossRefGoogle Scholar
Rinne, T., Alho, K., Ilmoniemi, R. J., Virtanen, J., & Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage, 12, 1419.CrossRefGoogle ScholarPubMed
Sallinen, M., Kaartinen, J., & Lyytinen, H. (1994). Is the appearance of mismatch negativity during stage 2 sleep related to the elicitation of K-complex? Electroencephalography and Clinical Neurophysiology, 91, 140148.CrossRefGoogle Scholar
Saltzman, E. L., & Munhall, K. G. (1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1, 333382.CrossRefGoogle Scholar
Scarborough, R. A. (2003, February 14–17). Lexical confusability and degree of coarticulation. Paper presented at the 29th Meeting of the Berkeley Linguistics Society.CrossRefGoogle Scholar
Shestakova, A., Brattico, E., Huotilainen, M., Galunov, V., Soloviev, A., Sams, M., et al. (2002). Abstract phoneme representations in the left temporal cortex: Magnetic mismatch negativity study. NeuroReport, 13, 18131816.CrossRefGoogle ScholarPubMed
Smith, C. L. (1992). The timing of vowel and consonant gestures. Unpublished doctoral dissertation, Yale University.Google Scholar
Smith, C. L. (1995). Prosodic patterns in the coordination of vowel and consonant gestures. In Copnnell, B. & Arvaniti, A. (Eds.), Papers in laboratory phonology: Vol. 4. Phonology and phonetic evidence (pp. 205222). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stetson, R. (1951). Motor phonetics: A study of speech movements in action (2nd ed.). Amsterdam: North Holland.Google Scholar
Tales, A., Newton, P., Troscianko, T., & Butler, S. (1999). Mismatch negativity in the visual modality. NeuroReport, 10, 33633367.CrossRefGoogle ScholarPubMed
Tervaniemi, M., Medvedev, S. V., Alho, K., Pakhomov, S. V., Roudas, M. S., van Zuijen, T. L., et al. (2000). Lateralized automatic auditory processing of phonetic versus musical information: A PET study. Human Brain Map, 10, 7479.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372, 9092.CrossRefGoogle ScholarPubMed
Tilsen, S. (2009). Subphonemic and cross-phonemic priming in vowel shadowing: Evidence for the involvement of exemplars in production. Journal of Phonetics, 37, 276296.CrossRefGoogle Scholar
Tremblay, K., Kraus, N., & McGee, T. (1998). The time course of auditory perceptual learning: Neurophysiological changes during speech-sound training. NeuroReport, 9, 35573560.CrossRefGoogle ScholarPubMed
van Oostendorp, M. (2003). Schwa in phonological theory. In Cheng, L. & Sybesma, R. (Eds.), Studies in generative grammar: Vol. 61. The second glot international state-of-the-article book. The latest in linguistics (pp. 431461). Berlin: Mouton de Gruyter.Google Scholar
Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28, 3042.CrossRefGoogle ScholarPubMed