Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T12:17:19.031Z Has data issue: false hasContentIssue false

Does consonant–vowel skeletal structure play a role early in lexical processing? Evidence from masked priming

Published online by Cambridge University Press:  02 November 2017

MANUEL PEREA*
Affiliation:
Universitat de València and Basque Center on Cognition, Brain, and Language, Donostia
ANA MARCET
Affiliation:
Universitat de València
JOANA ACHA
Affiliation:
Euskal Herriko Unibertsitatea, Donostia
*
ADDRESS FOR CORRESPONDENCE Manuel Perea, Departamento de Metodología, Universitat de València, Av. Blasco Ibáñez, 21, 46010 Valencia, Spain. E-mail: [email protected]

Abstract

Is the specific consonant–vowel (CV) letter combination of a word a basic source of information for lexical access in the early stages of processing? We designed two masked priming lexical decision experiments to respond to this question by directly examining the role of CV skeletal structure in written-word recognition. To that aim, each target word was preceded by a one-letter different nonword prime that kept the same CV skeletal structure or not. We also included an identity prime as a control. Results showed faster word identification times in the CV congruent condition than in the CV incongruent condition when a consonant was replaced from the target (paesaje–PAISAJE < parsaje–PAISAJE), but not when it was a vowel (alusno–ALUMNO = alueno–ALUMNO). This dissociation poses problems for those accounts based on an early activation of the CV skeletal structure during lexical processing. Instead, this pattern of data favors the view that it is the word's consonant skeleton rather than the CV skeletal structure that is the key element in the early phases of word processing. We discuss the theoretical and methodological implications of these findings.

Type
Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390412. doi:10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. doi:10.18637/jss.v067.i01 Google Scholar
Berent, I., & Marom, M. (2005). The skeletal structure of printed words: Evidence from the Stroop task. Journal of Experimental Psychology: Human Perception and Performance, 31, 328338. doi:10.1037/0096-1523.31.2.328 Google Scholar
Berent, I., & Perfetti, C. A. (1995). A rose is a REEZ: The two-cycles model of phonology assembly in reading English. Psychological Review, 102, 146184. doi:10.1037/0033-295x.102.1.146 CrossRefGoogle Scholar
Blythe, H. I., Johnson, R. L., Liversedge, S. P., & Rayner, K. (2014). Reading transposed text: Effects of transposed letter distance and consonant-vowel status on eye movements. Attention, Perception, & Psychophysics, 76, 24242440. doi:10.3758/s13414-014-0707-2 Google Scholar
Buchwald, A., & Rapp, B. (2006). Consonants and vowels in orthographic representations. Cognitive Neuropsychology, 23, 308337. doi:10.1080/02643290442000527 Google Scholar
Caramazza, A., & Miceli, G. (1990). The structure of graphemic representations. Cognition, 37, 243297. doi:10.1016/0010-0277(90)90047-N Google Scholar
Carreiras, M., & Perea, M. (2002). Masked priming effects with syllabic neighbors in a lexical decision task. Journal of Experimental Psychology: Human Perception and Performance, 28, 12281242. doi:10.1037/0096-1523.28.5.1228 Google Scholar
Carreiras, M., Dunabeitia, J. A., & Molinaro, N. (2009). Consonants and vowels contribute differently to visual word recognition: ERPs of relative position priming. Cerebral Cortex, 19, 26592670. doi:10.1093/cercor/bhp019 Google Scholar
Carreiras, M., Gillon-Dowens, M., Vergara, M., & Perea, M. (2009). Are vowels and consonants processed differently? Event-related potential evidence with a delayed letter paradigm. Journal of Cognitive Neuroscience, 21, 275288. doi:10.1162/jocn.2008.21023 Google Scholar
Carreiras, M., Vergara, M., & Perea, M. (2009). ERP correlates of transposed-letter priming effects: The role of vowels versus consonants. Psychophysiology, 46, 3442. doi:10.1111/j.1469-8986.2008.00725.x CrossRefGoogle ScholarPubMed
Chetail, F., & Drabs, V. (2014). The role of consonant/vowel organization in perceptual discrimination. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 938961. doi:10.1037/a0036166 Google Scholar
Chetail, F., Balota, D., Treiman, R., & Content, A. (2015). What can megastudies tell us about the orthographic structure of English words? Quarterly Journal of Experimental Psychology, 68, 15191540. doi:10.1080/17470218.2014.963628 Google Scholar
Chetail, F., Treiman, R., & Content, A. (2016). Effect of consonant/vowel letter organization on the syllable counting task: Evidence from English. Journal of Cognitive Psychology, 28, 3243. doi:10.1080/20445911.2015.1074582 Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256. doi:10.1037/0033-295x.108.1.204 Google Scholar
Comesaña, M., Soares, A. P., Marcet, A., & Perea, M. (2016). On the nature of consonant/vowel differences in letter position coding: Evidence from developing and adult readers. British Journal of Psychology, 107, 651674. doi:10.1111/bjop.12179 CrossRefGoogle ScholarPubMed
Cotelli, M., Abutalebi, J., Zorzi, M., & Cappa, S. F. (2003). Vowels in the buffer: A case study of acquired dysgraphia with selective vowel substitutions. Cognitive Neuropsychology, 20, 99114. doi:10.1080/02643290244000158 CrossRefGoogle ScholarPubMed
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 177, 713758. doi:10.1037/a0019738 Google Scholar
Davis, C. J., & Perea, M. (2005). BuscaPalabras: A program for deriving orthographic and phonological neighborhood statistics and other psycholinguistic indices in Spanish. Behavior Research Methods, 37, 665671. doi:10.3758/bf03192738 Google Scholar
Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013). EsPal: One-stop shopping for Spanish word properties. Behavior Research Methods, 45, 12461258. doi:10.3758/s13428-013-0326-1 CrossRefGoogle ScholarPubMed
Duñabeitia, J. A., & Carreiras, M. (2011). The relative position priming effect depends on whether letters are vowels or consonants. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 11431163. doi:10.1037/a0023577 Google Scholar
Ferrand, L., Segui, J., & Grainger, J. (1996). Masked priming of word and picture naming: The role of syllabic units. Journal of Memory and Language, 35, 708723. doi:10.1006/jmla.1996.0037 Google Scholar
Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680698. doi:10.1037/0278-7393.10.4.680 Google Scholar
Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116124. doi:10.3758/bf03195503 Google Scholar
Gibson, E. J. (1965). Learning to read. Science, 148, 10661072. doi:10.1126/science.148.3673.1066 CrossRefGoogle ScholarPubMed
Grainger, J. (2008). Cracking the orthographic code: An introduction. Language & Cognitive Processes, 23, 135. doi:10.1080/01690960701578013 CrossRefGoogle Scholar
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518565. doi:10.1037/0033-295x.103.3.518 Google Scholar
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42, 627633. doi:10.3758/brm.42.3.627 CrossRefGoogle ScholarPubMed
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package): R package version 2.0–30. Vienna: R Foundation for Statistical Computing.Google Scholar
Lesch, M. F., & Pollatsek, A. (1993). Automatic access of semantic information by phonological codes in visual word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 285294. doi:10.1037/0278-7393.19.2.285 Google Scholar
Lupker, S. J., Perea, M., & Davis, C. J. (2008). Transposed-letter effects: Consonants, vowels and letter frequency. Language and Cognitive Processes, 23, 93116. doi:10.1080/01690960701579714 CrossRefGoogle Scholar
Massol, S., Carreiras, M., & Duñabeitia, J. A. (2016). Consonantal overlap effects in a perceptual matching task. Experimental Brain Research, 234, 31573172. doi:10.1007/s00221-016-4713-6 Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375407. doi:10.1037/0033-295x.88.5.375 Google Scholar
New, B., & Nazzi, T. (2014). The time course of consonant and vowel processing during word recognition. Language, Cognition and Neuroscience, 29, 147157. doi:10.1080/01690965.2012. 735678 Google Scholar
New, B., Araújo, V., & Nazzi, T. (2008). Differential processing of consonants and vowels in lexical access through reading. Psychological Science, 19, 12231227. doi:10.1111/j.1467-9280.2008.02228.x Google Scholar
Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal Bayesian decision process. Psychological Review, 113, 327357. doi:10.1037/0033-295x.113.2.327 Google Scholar
Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: The case of orthographic regularities. Journal of Experimental Psychology: General, 130, 401426. doi:10.1037/0096-3445.130.3.401 Google Scholar
Perea, M., & Lupker, S. J. (2004). Can CANISO activate CASINO? Transposed-letter similarity effects with nonadjacent letter positions. Journal of Memory and Language, 51, 231246. doi:10.1016/j.jml.2004.05.005 Google Scholar
Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114, 273315. doi:10.1037/0033-295x.114.2.273 CrossRefGoogle ScholarPubMed
Pollatsek, A., Perea, M., & Carreiras, M. (2005). Does conal prime CANAL more than cinal? Masked phonological priming effects in Spanish with the lexical decision task. Memory and Cognition, 33, 557565. doi:10.3758/bf03193071 Google Scholar
R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ Google Scholar
Soares, A. P., Perea, M., & Comesaña, M. (2014). Tracking the emergence of the consonant bias in visual-word recognition: Evidence with developing readers. PLOS ONE, 9, e88580. doi:10.1371/journal.pone.0088580 Google Scholar
Taft, M., Xu, J., & Li, S. (2017). Letter coding in visual word recognition: The impact of embedded words. Journal of Memory and Language, 92, 1425. doi:10.1016/j.jml.2016.05.002 CrossRefGoogle Scholar
Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin and Review, 8, 221243. doi:10.3758/bf03196158 Google Scholar