We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/anziam.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a pair of identical theta neurons in the active regime, each coupled to the other via a delayed Dirac delta function. The network can support periodic solutions and we concentrate on solutions for which the neurons are half a period out of phase with one another, and also solutions for which the neurons are perfectly synchronous. The dynamics are analytically solvable, so we can derive explicit expressions for the existence and stability of both types of solutions. We find two branches of solutions, connected by symmetry-broken solutions which arise when the period of a solution as a function of delay is at a maximum or a minimum.
We conduct a theoretical analysis of the performance of $\beta $-encoders. The $\beta $-encoders are A/D (analogue-to-digital) encoders, the design of which is based on the expansion of real numbers with noninteger radix. For the practical use of such encoders, it is important to have theoretical upper bounds of their errors. We investigate the generating function of the Perron–Frobenius operator of the corresponding one-dimensional map and deduce the invariant measure of it. Using this, we derive an approximate value of the upper bound of the mean squared error of the quantization process of such encoders. We also discuss the results from a numerical viewpoint.