We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/anziam.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The study applies a two-dimensional adaptive mesh refinement (AMR) method to estimate the coordinates of the locations of the centre of vortices in steady, incompressible flow around a square cylinder placed within a channel. The AMR method is robust and low cost, and can be applied to any incompressible fluid flow. The considered channel has a blockage ratio of $1/8$. The AMR is tested on eight cases, considering flows with different Reynolds numbers ($5\le Re\le 50$), and the estimated coordinates of the location of the centres of vortices are reported. For all test cases, the initial coarse meshes are refined four times, and the results are in good agreement with the literature where a very fine mesh was used. Furthermore, this study shows that the AMR method can capture the location of the centre of vortices within the fourth refined cells, and further confirms an improvement in the estimation with more refinements.
Recently, we analysed spontaneous symmetry breaking (SSB) of solitons in linearly coupled dual-core waveguides with fractional diffraction and cubic nonlinearity. In a practical context, the system can serve as a model for optical waveguides with the fractional diffraction or Bose–Einstein condensate of particles with Lévy index $\alpha <2$. In an earlier study, the SSB in the fractional coupler was identified as the bifurcation of subcritical type, becoming extremely subcritical in the limit of $\alpha \rightarrow 1$. There, the moving solitons and collisions between them at low speeds were also explored. In the present paper, we present new numerical results for fast solitons demonstrating restoration of symmetry in post-collision dynamics.
We study the influence of a low-frequency harmonic vibration on the formation of the two-dimensional rolling solitary waves in vertically co-flowing two-layer liquid films. The system consists of two adjacent layers of immiscible fluids with the first layer being sandwiched between a vertical solid plate and the second fluid layer. The solid plate oscillates harmonically in the horizontal direction inducing Faraday waves at the liquid–liquid and liquid–air interfaces. We use a reduced hydrodynamic model derived from the Navier–Stokes equations in the long-wave approximation. Linear stability of the base flow in a flat two-layer film is determined semi-analytically using Floquet theory. We consider sub-millimetre-thick films and focus on the competition between the long-wavelength gravity-driven and finite wavelength Faraday instabilities. In the linear regime, the range of unstable wave vectors associated with the gravity-driven instability broadens at low and shrinks at high vibration frequencies. In nonlinear regimes, we find multiple metastable states characterized by solitary-like travelling waves and short pulsating waves. In particular, we find the range of the vibration parameters at which the system is multistable. In this regime, depending on the initial conditions, the long-time dynamics is dominated either by the fully developed solitary-like waves or by the shorter pulsating Faraday waves.
The pth ($p\geq 1$) moment exponential stability, almost surely exponential stability and stability in distribution for stochastic McKean–Vlasov equation are derived based on some distribution-dependent Lyapunov function techniques.
Three-dimensional short-crested water waves are known to host harmonic resonances (HRs). Their existence depends on their sporadicity versus their persistency. Previous studies, using a unique yet hybrid solution, suggested that HRs exhibit sporadic instability, with the domain of instability exhibiting a bubble-like structure which experiences a loss of stability followed by a re-stabilization. Through the calculation of their complete multiple solution structures and normal forms, we discuss the particular harmonic resonance (2,6). The (2,6) resonance was chosen, not only because it is of lower order, and thus more likely to be significant, but also because it is representative of a fully developed three-dimensional water wave field. Its appearance, growth rate and persistency are discussed. On our converged solutions, we show that, at an incidence angle for which HR (2,6) occurs, the associated superharmonic instability is no longer sporadic. It was also found that the multiple solution operates a subcritical pitchfork bifurcation, so regardless of the value of the control parameter, the wave steepness, a stable branch of the solution always exists. As a result, the analysis reveals two competing processes that either provoke and enhance HRs, or inhibit their appearance and development.
Early warning for epilepsy patients is crucial for their safety and well being, in particular, to prevent or minimize the severity of seizures. Through the patients’ electroencephalography (EEG) data, we propose a meta learning framework to improve the prediction of early ictal signals. The proposed bilevel optimization framework can help automatically label noisy data at the early ictal stage, as well as optimize the training accuracy of the backbone model. To validate our approach, we conduct a series of experiments to predict seizure onset in various long-term windows, with long short-term memory (LSTM) and ResNet implemented as the baseline models. Our study demonstrates that not only is the ictal prediction accuracy obtained by meta learning significantly improved, but also the resulting model captures some intrinsic patterns of the noisy data that a single backbone model could not learn. As a result, the predicted probability generated by the meta network serves as a highly effective early warning indicator.
We propose a novel time-asymptotically stable, implicit–explicit, adaptive, time integration method (denoted by the $\theta $-method) for the solution of the fractional advection–diffusion-reaction (FADR) equations. The spectral analysis of the method (involving the group velocity and the phase speed) indicates a region of favourable dispersion for a limited range of Péclet number. The numerical inversion of the coefficient matrix is avoided by exploiting the sparse structure of the matrix in the iterative solver for the Poisson equation. The accuracy and the efficacy of the method is benchmarked using (a) the two-dimensional fractional diffusion equation, originally proposed by researchers earlier, and (b) the incompressible, subdiffusive dynamics of a planar viscoelastic channel flow of the Rouse chain melts (FADR equation with fractional time-derivative of order ) and the Zimm chain solution (). Numerical simulations of the viscoelastic channel flow effectively capture the nonhomogeneous regions of high viscosity at low fluid inertia (or the so-called “spatiotemporal macrostructures”), experimentally observed in the flow-instability transition of subdiffusive flows.