Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T18:33:04.216Z Has data issue: false hasContentIssue false

What is the discrete analogue of the Painlevé property?

Published online by Cambridge University Press:  17 February 2009

A. Ramani
Affiliation:
CPT, Ecole Polytechnique, CNRS, UMR 7644, 91128 Palaiseau, France; e-mail: [email protected].
B. Grammaticos
Affiliation:
GMPIB, Université Paris VII, Tour 24-14, 5e étage, case 7021, 75251 Paris, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyse the various integrability criteria which have been proposed for discrete systems, focusing on the singularity confinement method. We present the exact procedure used for the derivation of discrete Painlevé equations based on the deautonomisation of integrable autonomous mappings. This procedure is then examined in the light of more recent criteria based on the notion of the complexity of the mapping. We show that the low-growth requirements lead, in the case of the discrete Painlevé equations, to exactly the same results as singularity confinement. The analysis of linearisable mappings shows that they have special growth properties which can be used in order to identify them. A working strategy for the study of discrete integrability based on singularity confinement and low-growth considerations is also proposed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Ablowitz, M. J., Ramani, A. and Segur, H., “Nonlinear evolution equations and ordinary differential equations of Painlevé type”, Lett. Nuov. Cim. 23 (1978) 333338.CrossRefGoogle Scholar
[2]Arnold, V. I., “Dynamics of complexity of intersections”, Bol. Soc. Bras. Mat. 21 (1990) 110.CrossRefGoogle Scholar
[3]Bellon, M. P., Maillard, J.-M. and Viallet, C.-M., “Rational mappings, aborescent iterations, and the symmetries of integrability”, Phys. Rev. Lett. 67 (1991) 13731376.CrossRefGoogle ScholarPubMed
[4]Conte, R. and Musette, M., “A new method to test discrete Painlevé equations”, Phys. Lett. A 223 (1996) 439448.CrossRefGoogle Scholar
[5]Falqui, G. and Viallet, C.-M., “Singularity, complexity, and quasi-integrability of rational mappings”, Comm. Math. Phys. 154 (1993) 111125.CrossRefGoogle Scholar
[6]Grammaticos, B., Nijhoff, F. and Ramani, A., “Discrete Painlevé equations”, in The Painlevé Property: One Century Later (ed. Conte, R.), CRM Series in Mathematical Physics, (Springer, New York, 1999) 413516.CrossRefGoogle Scholar
[7]Grammaticos, B. and Ramani, A., “Discrete Painlevé equations: coalescence, limits and degeneracies”, Physica A 223(1996) 160171.Google Scholar
[8]Grammaticos, B. and Ramani, A., “Integrability in a discrete world. Integrability and chaos in discrete systems”, Chaos, Solitons and Fractals 11 (2000) 718.Google Scholar
[9]Grammaticos, B., Ramani, A. and Lafortune, S., “The Gambier mapping revisited”, Physica A 253 (1998) 260270.CrossRefGoogle Scholar
[10]Grammaticos, B., Ramani, A. and Papageorgiou, V., “Discrete version of the Painlevé equations”, Phys. Rev. Lett. 67 (1991) 18251832.CrossRefGoogle Scholar
[11]Grammaticos, B., Ramani, A. and Tamizhmani, K. M., “Nonproliferations of pre-images in integrable mappings”, J. Phys. A 27 (1994) 559566.CrossRefGoogle Scholar
[12]Hietarinta, J. and Viallet, C., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett. 81 (1998) 325–28.CrossRefGoogle Scholar
[13]Joshi, N., “Singularity analysis and integrability for discrete dynamical systems”, J. Math. An. and Appl. 184 (1994) 573584.CrossRefGoogle Scholar
[14]Kruskal, M. D., private communication.Google Scholar
[15]Ohta, Y., Tamizhmani, K. M., Grammaticos, B. and Ramani, A., “Singularity confinement and algebraic entropy: the case of the discrete Painlevé equations”, Phys. Lett. A. 262 (1999)152157.CrossRefGoogle Scholar
[16]Painlevé, P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math. 25 (1902) 182.CrossRefGoogle Scholar
[17]Papageorgiou, V. G., Nijhoff, F. W., Grammaticos, B. and Ramani, A., “Isomonodromic deformation problems for discrete analogues of Painlevé equations”, Phys. Lett.A 164 (1992) 5764.CrossRefGoogle Scholar
[18]Quispel, G. R. W., Roberts, J. A. G. and Thompson, C. J., “Integrable mapping and soliton equations. II”, Physica D 34 (1989) 183192.CrossRefGoogle Scholar
[19]Ramani, A., Grammaticos, B. and Bountis, T., “The Painlevé property and singularity analysis of integrable and nonintegrable systems”, Phys. Rep. 180 (1989) 159245.CrossRefGoogle Scholar
[20]Ramani, A., Grammaticos, B. and Hietarinta, J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett. 67 (1991) 18291832.CrossRefGoogle ScholarPubMed
[21]Ramani, A., Grammaticos, B., Lafortune, S. and Ohta, Y., “Linearisable mappings and the low-growth criterion”, J. Phys. A 33 (2000) L287–L292.CrossRefGoogle Scholar
[22]Ramani, A., Grammaticos, B., Tamizhmani, T. and Tamizhmani, K. M., “Special function solutions for asymmetric discrete Painlevé equations”, J. Phys. A 32 (1999) 45534562.Google Scholar
[23]Ramani, A., Ohta, Y., Satsuma, J. and Grammaticos, B., “Self-duality and Schlesinger chains for the asymmetric d-PII and q-PIII equations”, Comm. Math. Phys. 192(1998) 6776.CrossRefGoogle Scholar
[24]Satsuma, J., private communication, 1992.Google Scholar
[25]Veselov, A. P., “Growth and integrability in the dynamics of mapping”, Comm. Math. Phys. 145 (1992) 181193.CrossRefGoogle Scholar