Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Paine, J. W.
and
Anderssen, R. S.
1980.
Uniformly valid approximation of eigenvalues of Sturm--Liouville problems in geophysics.
Geophysical Journal International,
Vol. 63,
Issue. 2,
p.
441.
Paine, J. W.
de Hoog, F. R.
and
Anderssen, R. S.
1981.
On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems.
Computing,
Vol. 26,
Issue. 2,
p.
123.
Andrew, Alan L
de Hoog, Frank R
and
Robb, Peter J
1981.
Leighton's bounds for Sturm-Liouville eigenvalues.
Journal of Mathematical Analysis and Applications,
Vol. 83,
Issue. 1,
p.
11.
Paine, J.
1982.
Correction of Sturm-Liouville eigenvalue estimates.
Mathematics of Computation,
Vol. 39,
Issue. 160,
p.
415.
Paine, John W
and
Andrew, Alan L
1983.
Bounds and higher-order estimates for Sturm-Liouville eigenvalues.
Journal of Mathematical Analysis and Applications,
Vol. 96,
Issue. 2,
p.
388.
Anderssen, R. S.
and
De Hoog, F. R.
1984.
On the correction of finite difference eigenvalue approximations for sturm-liouville problems with general boundary conditions.
BIT Numerical Mathematics,
Vol. 24,
Issue. 4,
p.
401.
Andrew, Alan L.
1988.
Numerical Mathematics Singapore 1988.
Vol. 86,
Issue. ,
p.
1.
Pryce, John D.
and
Marletta, Marco
1991.
A new multi-purpose software package for Schrödinger and Sturm-Liouville computations.
Computer Physics Communications,
Vol. 62,
Issue. 1,
p.
42.
Marletta, Marco
and
Pryce, John D.
1992.
Automatic solution of Sturm-Liouville problems using the Pruess method.
Journal of Computational and Applied Mathematics,
Vol. 39,
Issue. 1,
p.
57.
Condon, D.J.
1995.
Day's implementation of the pruess method for Sturm-Liouville eigenvalues.
Computers & Mathematics with Applications,
Vol. 29,
Issue. 4,
p.
9.
Kosowski, Przemysław
2000.
The relative error in the Pruess method for Sturm–Liouville problems.
Linear Algebra and its Applications,
Vol. 309,
Issue. 1-3,
p.
325.
Ixaru, L.Gr.
2000.
CP methods for the Schrödinger equation.
Journal of Computational and Applied Mathematics,
Vol. 125,
Issue. 1-2,
p.
347.
Jódar, L.
and
Caudillo-Mata, L.A.
2005.
A low computational cost numerical method for solving mixed diffusion problems.
Applied Mathematics and Computation,
Vol. 170,
Issue. 1,
p.
673.
Ledoux, V.
Van Daele, M.
and
Vanden Berghe, G.
2009.
Efficient computation of high index Sturm–Liouville eigenvalues for problems in physics.
Computer Physics Communications,
Vol. 180,
Issue. 2,
p.
241.
Ledoux, V.
and
Van Daele, M.
2010.
Solving Sturm–Liouville problems by piecewise perturbation methods, revisited.
Computer Physics Communications,
Vol. 181,
Issue. 8,
p.
1335.
Ledoux, Veerle
and
Van Daele, Marnix
2011.
On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation.
Zeitschrift für angewandte Mathematik und Physik,
Vol. 62,
Issue. 6,
p.
993.
Taher, Anis Haytham Saleh
2019.
Computing High-Index Eigenvalues of Singular Sturm–Liouville Problems.
International Journal of Applied and Computational Mathematics,
Vol. 5,
Issue. 2,