No CrossRef data available.
Article contents
A unified presentation of generalised Voigt functions
Published online by Cambridge University Press: 17 February 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Voigt functions occur frequently in a wide variety of problems in several diverse fields of physics. This paper presents a unified study of generalised Voigt functions. In particular, some expansions of unified Voigt functions are given in terms of the original functions. Some deductions from these representations are obtained which give us an opportunity to underline the special rôle of the associated generating functions.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2003
References
[1]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher transcendental functions, Volume 1 (McGraw-Hill, New York, 1953).Google Scholar
[2]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Table of integral transforms, Volume 1 (McGraw-Hill, New York, 1954).Google Scholar
[3]Exton, H., “On the reducibility of the Voigt functions”, J. Phys. A.: Math. Gen. 14 (1981) L75–L77.CrossRefGoogle Scholar
[4]Fried, B. D. and Conte, S. D., The plasma dispersion function (Academic Press, New York, 1961).Google Scholar
[6]Reiche, F., “Uber die Emission, Absorption and Intesitatsverteilung von Spektrallinien”, Ber. Deutsch Phys. Ges. 15 (1913) 3–21.Google Scholar
[7]Srivastava, H. M. and Manocha, H. L., A treatise on generating functions (Halsted Press, New York, 1984).Google Scholar
[8]Srivastava, H. M. and Miller, E. A., “A unified presentation of the Voigt functions”, Astrophys. Space Sci. 135 (1987) 111–118.CrossRefGoogle Scholar
[9]Srivastava, H. M., Pathan, M. A. and Kamarujjama, M., “Some unified presentations of the generalized Voigt functions”, Comm. Appl. Anal. 2 (1998) 49–64.Google Scholar
[10]Watson, G. N., A treatise on the theory of Bessel functions (Cambridge Univ. Press, Cambridge, 1944).Google Scholar
You have
Access