No CrossRef data available.
Article contents
THRIFTY SWIMMING WITH SHEAR-THINNING: A NOTE ON OUT-OF-PLANE EFFECTS FOR UNDULATORY LOCOMOTION THROUGH SHEAR-THINNING FLUIDS
Published online by Cambridge University Press: 08 June 2018
Abstract
Microscale propulsion is integral to numerous biomedical systems, including biofilm formation and human reproduction, where the surrounding fluids comprise suspensions of polymers. These polymers endow the fluid with non-Newtonian rheological properties, such as shear-thinning and viscoelasticity. Thus, the complex dynamics of non-Newtonian fluids present numerous modelling challenges. Here, we demonstrate that neglecting ‘out-of-plane’ effects during swimming through a shear-thinning fluid results in a significant overestimate of fluid viscosity around the undulatory swimmer Caenorhabditis elegans. This miscalculation of viscosity corresponds with an overestimate of the power the swimmer expends, a key biophysical quantity important for understanding the internal mechanics of the swimmer. As experimental flow-tracking techniques improve, accurate experimental estimates of power consumption in similar undulatory systems, such as the planar beating of human sperm through cervical mucus, will be required to probe the interaction between internal power generation, fluid rheology, and the resulting waveform.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Society