Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T08:37:09.222Z Has data issue: false hasContentIssue false

TEMPORAL AND SPATIAL HETEROGENEITY IN PULMONARY PERFUSION: A MATHEMATICAL MODEL TO PREDICT INTERACTIONS BETWEEN MACRO- AND MICRO-VESSELS IN HEALTH AND DISEASE

Published online by Cambridge University Press:  07 June 2018

A. R. CLARK*
Affiliation:
Auckland Bioengineering Institute, University of Auckland, New Zealand email [email protected], [email protected]
M. H. TAWHAI
Affiliation:
Auckland Bioengineering Institute, University of Auckland, New Zealand email [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Heterogeneity in pulmonary microvascular blood flow (perfusion) provides an early indicator of lung disease or disease susceptibility. However, most computational models of the pulmonary vasculature neglect structural heterogeneities, and are thus not accurate predictors of lung function in disease that is not diffuse (spread evenly through the lung). Models that do incorporate structural heterogeneity have either neglected the temporal dynamics of blood flow, or the structure of the smallest blood vessels. Larger than normal oscillations in pulmonary capillary calibre, high oscillatory stress contribute to disease progression. Hence, a model that captures both spatial and temporal heterogeneity in pulmonary perfusion could provide new insights into the early stages of pulmonary vascular disease. Here, we present a model of the pulmonary vasculature, which captures both flow dynamics, and the anatomic structure of the pulmonary blood vessels from the right to left heart including the micro-vasculature. The model is compared to experimental data in normal lungs. We confirm that spatial heterogeneity in pulmonary perfusion is time-dependent, and predict key features of pulmonary hypertensive disease using a simple implementation of increased vascular stiffness.

Type
Research Article
Copyright
© 2018 Australian Mathematical Society 

References

Alford, S. K., van Beek, E. J. R., McLennan, G. and Hoffman, E. A., “Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers”, Proc. Natl Acad. Sci. 107 (2010) 74857490; doi:10.1073/pnas.0913880107.Google Scholar
Burrowes, K. S., Clark, A. R., Wilsher, M., Milne, D. and Tawhai, M. H., “Hypoxic pulmonary vasoconstriction as a contributor to response in acute pulmonary embolism”, Ann. Biomed. Eng. 42 (2014) 16311643; doi:10.1007/s10439-014-1011-y.CrossRefGoogle ScholarPubMed
Burrowes, K. S., Hunter, P. J. and Tawhai, M. H., “Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels”, J. Appl. Phys. 99 (2005) 731738; doi:10.1152/japplphysiol.01033.2004.Google ScholarPubMed
Burrowes, K. S. and Tawhai, M. H., “Coupling of lung tissue tethering force to fluid dynamics in the pulmonary circulation”, Int. J. Numer. Methods Biomed. Eng. 26 (2010) 862875; doi:10.1002/cnm.1386.CrossRefGoogle Scholar
Burton, A. C., Physiology and biophysics of the circulation: An introductory text (Year Book Medical Publishers, Chicago, IL, 1972).Google Scholar
Champion, H. C., Michelakis, E. D. and Hassoun, P. M., “Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical research implications”, Pulm. Vasc. Dis. (2009) 9921007; doi:10.1161/CIRCULATIONAHA.106.674028; Circulation(120).Google Scholar
Chaturani, P. and Wassf Isaac, A. S. A., “Blood flow with body acceleration forces”, Int. J. Eng. Sci. 33 (1995) 18071820; doi:10.1016/0020-7225(95)00027-U.Google Scholar
Clark, A. R., Burrowes, K. S. and Tawhai, M. H., “Contribution of serial and parallel mirco-perfusion to spatial variability in pulmonary inter- and intra-acinar blood flow”, J. Appl. Phys. 108 (2010) 11161126; doi:10.1152/japplphysiol.01177.2009.Google Scholar
Clark, A. R., Milne, D., Wilsher, M., Burrowes, K. S., Bajaj, M. and Tawhai, M. H., “Lack of functional information explains the poor performance of ‘clot load scores’ at predicting outcome in acute pulmonary embolism”, Respir. Physiol. Neurobiol. 190 (2014) 113; doi:10.1016/j.resp.2013.09.005.Google Scholar
Clark, A. R., Tawhai, M. H., Hoffman, E. A. and Burrowes, K. S., “The interdependent contributions of gravitational and structural features to perfusion distribution in a multiscale model of the pulmonary circulation”, J. Appl. Physiol. 110 (2011) 943955; doi:10.1152/japplphysiol.00775.2010.Google Scholar
Conhaim, R. L., Segal, G. S. and Watson, K. E., “Arterio-venous anastomoses in isolated perfused rat lungs”, Phys. Rep. 4 (2016) e13023; doi:10.14814/phy2.13023.Google Scholar
Duan, B. and Zamir, M., “Viscous damping in one-dimensional wave transmission”, J. Acoust. Soc. Amer. 92 (1992) 33583363; doi:10.1121/1.404185.CrossRefGoogle Scholar
Duan, B. and Zamir, M., “Reflection coefficients in pulsatile flow through converging junctions and the pressure through a converging loop”, J. Biomech. 26 (1993) 14391447; doi:10.1016/0021-9290(93)90094-U.Google Scholar
Fung, Y.-C., “Theoretical pulmonary microvascular impedance”, Ann. Biomed. Eng. 1 (1972) 221245; doi:10.1007/BF02584209.CrossRefGoogle ScholarPubMed
Fung, Y. C., Biodynamics: Circulation (Springer, New York, NY, 1984).Google Scholar
Fung, Y.-C. and Sobin, S. S., “Theory of sheet flow in pulmonary alveoli”, J. Appl. Phys. 26 (1969) 472488; doi:10.1152/jappl.1969.26.4.472.Google Scholar
Fung, Y.-C. and Sobin, S. S., “Elasticity of the pulmonary alveolar sheet”, Circ. Res. 30 (1972) 451469; doi:10.1161/01.RES.30.4.451.Google Scholar
Fung, Y. C. and Sobin, S. S., “Pulmonary alveolar blood flow”, Circ. Res. 30 (1972) 470490; doi:10.1161/01.RES.30.4.470.Google Scholar
Gan, R. Z. and Yen, R. T., “Vascular impedance analysis in dog lung with detailed morphometric and elasticity data”, J. Appl. Phys. 77 (1994) 706717; doi:10.1152/jappl.1994.77.2.706.Google Scholar
Glenny, R. W., Polissar, N. L., McKinney, S. and Robertson, H. T., “Temporal heterogeneity of regional pulmonary perfusion is spatially clustered”, J. Appl. Phys. 79 (1995) 9861001; doi:10.1152/jappl.1995.79.3.986.Google Scholar
Glenny, R. W. and Robertson, H. T., “Spatial distribution of ventilation and perfusion: mechanisms and regulation”, Compr. Phys. 1 (2011) 373395; doi:10.1002/cphy.c100002.Google Scholar
Haneda, T., Nakajima, T., Shirato, K., Onodera, S. and Takishima, T., “Effects of oxygen breathing on pulmonary vascular impedance in patients with pulmonary hypertension”, Chest 83 (1983) 520527; doi:10.1378/chest.83.3.520.Google Scholar
Heath, D. and Edwards, J. E., “The pathology of hypertensive pulmonary vascular disease: a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects”, Circulation 18 (1958) 533547; doi:10.1161/01.CIR.18.4.533.Google Scholar
Hoffman, E. A. et al. , “Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function”, Acad. Rad. 10 (2003) 11041118; doi:10.1016/S1076-6332(03)00330-1.Google Scholar
Hoffman, E. A. et al. , “The comprehensive imaging-based analysis of the lung: a forum for team science”, Acad. Radiol. 11 (2004) 13701380; doi:10.1016/j.acra.2004.09.005.Google Scholar
Hopkins, S. R., Garg, J., Bolar, D. S., Balouch, J. and Levin, D. L., “Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema”, Am. J. Respir. Crit. Care Med. 171 (2005) 8387; doi:10.1164/rccm.200406-707OC.Google Scholar
Hopkins, S. R., Henderson, S. C., Levin, D. L., Yamada, K., Arai, T., Buxton, R. B. and Prisk, G. K., “Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect”, J. Appl. Phys. 103 (2007) 240248; doi:10.1152/japplphysiol.01289.2006.Google Scholar
Huez, S., Brimioulle, S., Naeije, R. and Vachiéry, J.-L., “Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension”, Chest 125 (2004) 21212128; doi:10.1378/chest.125.6.2121.Google Scholar
Karreman, G., “Some contributions to the mathematical biology of blood circulation. Reflections of pressure waves in the arterial system”, Bull. Math. Biophys. 14 (1952) 327350; doi:10.1007/BF02477850.CrossRefGoogle Scholar
Kligerman, S. J., Henry, T., Lin, C. T., Franks, T. J. and Galvin, J. R., “Mosaic attenuation: etiology, methods of differentiation and pitfalls”, RadioGraphics 35 (2015) 13601380; doi:10.1148/rg.2015140308.Google Scholar
Krenz, G. S. and Dawson, C. A., “Flow and pressure distributions in vascular networks consisting of distensible vessels”, Am. J. Phys.: Heart Circ. Phys. 284 (2003) H2192H2203; doi:10.1152/ajpheart.00762.2002.Google ScholarPubMed
Kussmaul, W. G., Wieland, J. M. and Laskey, W. K., “Pressure-flow relations in the pulmonary artery during myocardial ishaemia: implications for right ventricular function in coronary disease”, Cardiovasc. Res. 22 (1988) 627638; doi:10.1093/cvr/22.9.627.Google Scholar
Vidal Melo, M. F., Winkler, T., Harris, R. S. T., Musch, G., Greene, R. E. and Venegas, J. G., “Spatial heterogeneity of lung perfusion assessed with $^{13}$ N PET as a vascular biomarker in chronic obstructive pulmonary disease”, J. Nuclear Med. 51 (2010) 5765; doi:10.2967/jnumed.109.065185.Google Scholar
Murgo, J. P. and Westerhof, N., “Input impedance of the pulmonary arterial system in normal man: effects of respiration and comparison to systemic impedance”, Circ. Res. 54 (1984) 666673; doi:10.1161/01.RES.54.6.666.Google Scholar
Panaretou, M. and Dernellis, J., “Assessment of left atrial input impedance in normal subjects and in hypertensive patients”, Eur. J. Heart Fail. 7 (2005) 6368; doi:10.1016/j.ejheart.2004.03.019.Google Scholar
Piene, H., “Pulmonary arterial impedance and right ventricular function”, Phys. Rev. 66 (1986) 606652; doi:10.1152/physrev.1986.66.3.606.Google Scholar
Postles, A., Clark, A. R. and Tawhai, M. H., “Dynamic blood flow and wall shear stress in pulmonary hypertensive disease”, in: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Engineering in Medicine and Biology Society (EMBC), 2014) 56715674; doi:10.1109/EMBC.2014.6944914.Google Scholar
Pries, A. R., Secomb, T. W. and Gaehtgens, P., “Biophysical aspects of blood flow in the microvasculature”, Cardiovasc. Res. 32 (1996) 654667; doi:10.1016/S0008-6363(96)00065-X.Google Scholar
Proenca, M., Braun, F., Sola, J., Thiran, J.-P. and Lemay, M., “Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study”, Med. Biol. Eng. Comput. 55 (2017) 949963; doi:10.1007/s1151.Google Scholar
Qureshi, M. U., Vaughan, G. D. A., Sainsbury, C., Johnson, M., Peskin, C. S. and Olufsen, M. S., “Numerical simulation of blood flow and pressure drop in the pulmonary arterial circulation”, Biomech. Model. Mechanobiol. 13 (2014) 11371154; doi:10.1007/s10237-014-0563-y.Google Scholar
Sud, V. K. and Sekhon, G. S., “Arterial flow under periodic body acceleration”, Bull. Math. Biol. 47 (1985) 3552; doi:10.1007/BF02459645.Google Scholar
Swan, A. J., Clark, A. R. and Tawhai, M. H., “A computational model of the topographic distribution of ventilation in healthy human lungs”, J. Theor. Biol. 300 (2012) 222231; doi:10.1016/j.jtbi.2012.01.042.Google Scholar
Tan, W., Madhavan, K., Hunter, K. S., Park, D. and Stenmark, K. R., “Vascular stiffening in pulmonary hypertension: cause or consequence? Pulm. Circ. 4 (2014) 560580; doi:10.1086/677370.CrossRefGoogle ScholarPubMed
Tawhai, M. H., Clark, A. R. and Burrowes, K. S., “Computational models of the pulmonary circulation: insights and the move toward clinically directed studies”, Pulm. Circ. 1 (2011) 224238; doi:10.4103/2045-8932.83452.Google Scholar
Venegas, J. G., Winkler, T., Musch, G., Vidal Melo, M. F., Layfield, D., Tgavelekos, N., Fischman, A. J., Callahan, R. J., Bellani, G. and Harris, R. S., “Self-organized patchiness in asthma as a prelude to catastrophic shifts”, Nature 434 (2005) 777782; doi:10.1038/nature03490.Google Scholar
Wang, Z. and Chesler, N. C., “Pulmonary vascular wall stiffness: an important contributor to the increase right ventricular afterload with pulmonary hypertension”, Pulm. Circ. 1 (2011) 212223; doi:10.4103/2045-8932.83453.Google Scholar
West, J. B., Respiratory physiology - the essentials (Williams and Wilkins, Baltimore, MD, 1995).Google Scholar
West, J. B., Dollery, C. T. and Naimark, A., “Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures”, J. Appl. Phys. 19 (1964) 713724; doi:10.1152/jappl.1964.19.4.713.Google Scholar
Wiener, F., Morkin, E., Skalak, R. and Fishman, A. P., “Wave propagation in the pulmonary circulation”, Circ. Res. 19 (1966) 834850; doi:10.1161/01.RES.19.4.834.Google Scholar
Womersley, J. R., “Oscillatory motion of a viscous liquid in a thin walled elastic tube. I: the linear approximation for long waves”, Lond. Edinb. Dubl. Phil. Mag. J. Sci. 46 (1955) 199221.Google Scholar
Wylie, E. B. and Streeter, V., Fluid transient (McGraw-Hill, New York, NY, 1978).Google Scholar
Yen, R. T., Fung, Y. C. and Bingham, N., “Elasticity of small pulmonary arteries in the cat”, J. Biomech. Eng. 102 (1980) 170177; doi:10.1115/1.3138218.Google Scholar
Zhou, Q., Gao, J., Huang, W. and Yen, R. T., “Vascular impedance analysis in human pulmonary circulation”, Proceedings of IMECE AMSE International Mechanical Engineering Congress and Exposition, IMECE2002–33525 (2002); doi:10.1115/IMECE2002-33525.Google Scholar
Zhuang, F. Y., Fung, Y. C. and Yen, R. T., “Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data”, J. Appl. Phys. 55 (1983) 13411348; doi:10.1152/jappl.1983.55.4.1341.Google Scholar