Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T02:28:01.243Z Has data issue: false hasContentIssue false

Some integral inequalities with bounds for moments of distribution II

Published online by Cambridge University Press:  17 February 2009

Sanja Varošanec
Affiliation:
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia.
Josip Pečarić
Affiliation:
Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several generalizations are given of the Gauss-Winckler inequality for the moments of a probability distribution.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Maligranda, L., Pečarić, J. and Persson, L. E., “Stolarsky's inequality with general weights”, Proc. Amer. Math. Soc. 123 (1995) 21132118.Google Scholar
[2]Mitrinović, D. S. and Pečarić, J. E., “Note on the Gauss-Winckler inequality”, Anz. Österreich Akad. Wiss., Math.-Natur. Kl. 6 (1986) 8992.Google Scholar
[3]Mitrinović, D. S., Pečarić, J. E. and Fink, A. M., Classical and new inequalities in analysis (Kluwer, Dordrecht, 1993).CrossRefGoogle Scholar
[4]Pečarić, J., “A reverse Stolarsky's inequality”, Amer. Math. Monthly 101 (1994) 565567.Google Scholar
[5]Pečarić, J., “On Stolarsky's quotient”, Prilozi MANU (Skopje) 14 (2) (1993) 5560.Google Scholar
[6]Pečarić, J. and Varošanec, S., “Remarks on Gauss-Winckler's and Stolarsky's inequalities”, Utilitas Math. 48 (1995) 233241.Google Scholar
[7]Stolarsky, K. B., “From Wythoff's Nim to Chebyshev's inequality”, Amer. Math. Monthly 98 (1991) 889900.CrossRefGoogle Scholar
[8]Varošanec, S. and Pečarić, J., “Gauss' and related inequalities”, Z. Anal. Anwendungen 14 (1994) 175183.Google Scholar
[9]Varošanec, S. and Pečarić, J., “Some integral inequalities with bounds for moments of distribution”, J. Austral. Math. Soc., Ser. B 38 (1997) 325335.Google Scholar