Hostname: page-component-5cf477f64f-fcbfl Total loading time: 0 Render date: 2025-03-26T01:12:39.985Z Has data issue: false hasContentIssue false

A SIXTH-ORDER HERMITE COLLOCATION TECHNIQUE FOR NUMERICAL STUDY OF NONLINEAR FISHER AND BURGERS–FISHER EQUATIONS

Published online by Cambridge University Press:  14 March 2025

ARCHNA KUMARI
Affiliation:
Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, India; e-mail: [email protected]
VIJAY KUMAR KUKREJA*
Affiliation:
Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, India; e-mail: [email protected]

Abstract

This study aims to formulate a highly accurate numerical method, specifically a seventh-order Hermite technique with an error term of sixth order, to solve the Fisher and Burgers–Fisher equations. This technique employs a combination of orthogonal collocation on the finite element method and hepta Hermite basis functions. By ensuring continuity of the dependent variable and its first three derivatives across the entire solution domain, it achieves a remarkable level of accuracy and smoothness. The space discretization is handled through the application of hepta Hermite polynomials, while the time discretization is managed by the Crank–Nicholson scheme. The stability and convergence analysis of the scheme are discussed in detail. To validate the accuracy of the proposed technique, three examples are taken. The results obtained from these examples are thoroughly analysed and compared against the exact solutions and reliable data from the existing literature. It is established that the proposed technique is easy to implement and gives better results as compared with existing ones.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. and Zeppetella, A., “Explicit solution of Fisher’s equation for a special wave speed”, Bull. Math. Biol. 41 (1979) 835840; doi:10.1007/BF02462380.CrossRefGoogle Scholar
Aggarwal, S. K., “Some numerical experiments on Fisher equation”, Int. Commun. Heat Mass Trans. 12 (1985) 417430; doi:10.1016/0735-1933(85)90036-3.CrossRefGoogle Scholar
Akinfe, T. K. and Loyinmi, A. C., “A solitary wave solution to the generalized Burgers–Fisher equation using an improved differential transform method: a hybrid scheme approach”, Heliyon 7(5) (2021); doi:10.1016/j.heliyon.2021.e07001.CrossRefGoogle Scholar
Aronson, D. G. and Weinberger, H. F., “Nonlinear diffusion in population genetics, combustion and nerve pulse propagation”, in: Partial differential equations and related topics, Volume 446 of Lect. Notes in Math. (ed. J. A. Goldstein) (Springer, Berlin–Heidelberg, 1975) 549; doi:10.1007/BFb0070595.CrossRefGoogle Scholar
Arora, S., Jain, R. and Kukreja, V. K., “A robust Hermite spline collocation technique to study generalized Burgers–Huxley equation, generalized Burgers–Fisher equation and Modified Burgers equation”, J. Ocean Eng. Sci. (2022) in press; doi:10.1016/j.joes.2022.05.016.CrossRefGoogle Scholar
Babolian, E. and Saeidian, J., “Analytic approximate solutions to Burgers Fisher, Huxley equations and two combined forms of these equations”, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 19841992; doi:10.1016/j.cnsns.2008.07.019.CrossRefGoogle Scholar
Balyan, L. K., Mittal, A. K., Kumar, M. and Choube, M.,“Stability analysis and highly accurate numerical approximation of Fisher’s equations using pseudospectral method”, Math. Comput. Simulation 177 (2020) 86104; doi:10.1016/j.matcom.2020.04.012.CrossRefGoogle Scholar
Bateman, H., “Some recent researches on the motion of fluids”, Monthly Weather Rev. 43(4) (1915) 163170; doi:10.1175/1520-0493.2.0.CO;2>CrossRefGoogle Scholar
Bratsos, A. G., “An improved second-order numerical methods for the generalized Burgers–Fisher equation”, ANZIAM J. 54 (2013) 181199; doi:10.21914/anziamj.v54i0.4019.Google Scholar
Bratsos, A. G. and Khaliq, A. Q. M., “An exponential time differencing method of lines for Burgers–Fisher and coupled Burgers equations”, J. Comput. Appl. Math. 356 (2019) 182197; doi:10.1016/j.cam.2019.01.028.CrossRefGoogle Scholar
Burgers, J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech. 1 (1948) 171199; doi:10.1016/S0065-2156(08)70100-5.CrossRefGoogle Scholar
Cattani, C. and Kudreyko, A., “Multiscale analysis of the Fisher equation”, in: Computational science and its applications – ICCSA 2008, Volume 5072 of Lect. Notes in Comput. Sci. (eds. O. Gervasi, B. Murgante, A. Laganà, D. Taniar, Y. Mun, M. L. Gavrilova) (Springer, Berlin, Heidelberg, 2008) 11711180. doi:10.1007/978-3-540-69839-5_89.CrossRefGoogle Scholar
Chandraker, V. and Awasthi, A., “Implicit numerical techniques for Fisher equation”, J. Inf. Optim. Sci. 39 (2018) 113; doi:10.1080/02522667.2017.1374722.Google Scholar
Dag, I. and Ersoy, O., “The exponential cubic B-spline algorithm for Fisher equation”, Chaos Solitons Fractals 86 (2016) 101106; doi:10.1016/j.chaos.2016.02.031.CrossRefGoogle Scholar
Dag, I., Sahin, A. and Korkmaz, A., “Numerical investigation of the solution of Fisher’s equation via the B-spline Galerkin method”, Numer. Methods Partial Differential Equations 26 (2010) 14831503; doi:10.1002/num.20507.CrossRefGoogle Scholar
El-Tantawy, S. A., Matoog, R. T., Shah, R., Alrowaily, A. W. and Ismaeel, S. M., “On the shock wave approximation to fractional generalized Burgers–Fisher equations using the residual power series transform method”, Phys. Fluids 36 (2024) Article ID: 023105; doi:10.1063/5.0187127.CrossRefGoogle Scholar
Fisher, R. A., “The wave of advance of advantageous genes”, Annu. Eugen. 7 (1937) 355369; doi:10.1111/j.1469-1809.1937.tb02153.x.CrossRefGoogle Scholar
Golbabai, A. and Javidi, M., “A spectral domain decomposition approach for the generalized Burgers–Fisher equation”, Chaos Solitons Fractals 39 (2009) 385392; doi:10.1016/j.chaos.2007.04.013.CrossRefGoogle Scholar
Ismail, H. N., Raslan, K. and Rabboh, A. A. A., “Adomian decomposition method for Burgers Huxley and Burgers–Fisher equations”, Appl. Math. Comput. 159 (2004) 291301; doi:10.1016/j.amc.2003.10.050.Google Scholar
Izadi, M. and Srivastava, H. M., “Numerical treatments of nonlinear Burgers–Fisher equation via a combined approximation technique”, Kuwait J. Sci. 51(2) (2024) Article ID: 100163; doi:10.1016/j.kjs.2023.12.003.CrossRefGoogle Scholar
Javidi, M., “Spectral collocation method for the solution of the generalized Burgers–Fisher equation”, Appl. Math. Comput. 174 (2006) 345352; doi:10.1016/j.amc.2005.04.084.Google Scholar
Kaya, D. and El-Sayed, S. M., “A numerical simulation and explicit solutions of the generalized Burgers–Fisher equation”, Appl. Math. Comput. 152 (2004) 403413; doi:10.1016/S0096-3003(03)00565-4.Google Scholar
Khaled, K. A., “Numerical study of Fisher’s reaction-diffusion equation by the Sinc collocation method”, J. Comput. Appl. Math. 137 (2001) 245255; doi:10.1016/S0377-0427(01)00356-9.CrossRefGoogle Scholar
Kumari, A. and Kukreja, V. K., “Septic Hermite collocation method for the numerical solution of Benjamin–Bona–Mahony–Burgers equation”, J. Difference Equ. Appl. 27 (2021) 11931217; doi:10.1080/10236198.2021.1972985.CrossRefGoogle Scholar
Kumari, A. and Kukreja, V. K., “Error bounds for septic Hermite interpolation and its implementation to study modified Burgers equation”, Numer. Algorithms 89 (2021) 17991821; doi:10.1007/s11075-021-01173-y.CrossRefGoogle Scholar
Kumari, A. and Kukreja, V. K., “Survey of Hermite interpolating polynomials for the solution of differential equations”, Mathematics 11 (2023) Article ID: 3157; doi:10.3390/math11143157.CrossRefGoogle Scholar
Maini, P. K., McElwain, S. and Leavesley, D., “Travelling waves in a wound healing assay”, Appl. Math. Lett. 17 (2004) 575580; doi:10.1016/S0893-9659(04)90128-0.CrossRefGoogle Scholar
Mittal, R. C. and Arora, G., “Efficient numerical solution of Fisher’s equation by using B-spline method”, Int. J. Comput. Math. 87 (2010) 30393051; doi:10.1080/00207160902878555.CrossRefGoogle Scholar
Mittal, R. C. and Jain, R. K., “Numerical solutions of nonlinear Fisher’s reaction-diffusion equation with modified cubic B-spline collocation method”, Math. Sci. 7 (2013) 110; doi:10.1186/2251-7456-7-12.CrossRefGoogle Scholar
Mittal, R. C. and Kumar, S., “Numerical study of Fisher’s equation by wavelet Galerkin method”, Int. J. Comput. Math. 83 (2006) 287298; doi:10.1080/00207160600717758.CrossRefGoogle Scholar
Mittal, R. C. and Tripathi, A., “Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines”, Int. J. Comput. Math. 92 (2015) 10531077; doi:10.1080/00207160.2014.920834.CrossRefGoogle Scholar
Moghimi, M. and Hejazi, F. S., “Variational iteration method for solving generalized Burgers–Fisher and Burgers equations”, Chaos Solitons Fractals 33 (2007) 17561761; doi:10.1016/j.chaos.2006.03.031.CrossRefGoogle Scholar
Murray, J. D., Mathematical biology (Springer-Verlag, Berlin–Heidelberg, 1989); doi:10.1007/978-3-662-08539-420.CrossRefGoogle Scholar
Olmos, D. and Shizgal, B. D., “A pseudospectral method of solution of Fisher’s equation”, J. Comput. Appl. Math. 193 (2006) 219242; doi:10.1016/j.cam.2005.06.028.CrossRefGoogle Scholar
Qiu, Y. and Sloan, D., “Numerical solution of Fisher’s equation using a moving mesh method”, J. Comput. Phys. 146 (1998) 726746; doi:10.1006/jcph.1998.6081.CrossRefGoogle Scholar
Rohila, R. and Mittal, R. C., “Numerical study of reaction diffusion Fisher’s equation by fourth order cubic B-spline collocation method”, Math. Sci. 12 (2018) 7989; doi:10.1007/s40096-018-0247-3.CrossRefGoogle Scholar
Sachdev, P. L., Self-similarity and beyond: exact solutions of nonlinear problems (Chapman and Hall/CRC, New York, 2000); doi:10.1201/9780429115950.CrossRefGoogle Scholar
Sahin, A. and Ozmen, O., “Usage of higher order B-splines in numerical solution of Fisher’s equation”, Int. J. Nonlinear Sci. 17 (2014) 241253.Google Scholar
Sangwan, V. and Kaur, B., “An exponentially fitted numerical technique for singularly perturbed Burgers–Fisher equation on a layer adapted mesh”, Int. J. Comput. Math. 96 (2019) 15021513; doi:10.1080/00207160.2018.1519552.CrossRefGoogle Scholar
Sari, M., Gurarslan, G. and Dag, I., “A compact finite difference method for the solution of the generalized Burgers–Fisher equation”, Numer. Methods Partial Differential Equations 26 (2010) 125134; doi:10.1002/num.20421.CrossRefGoogle Scholar
Shuklav, H. S. and Tamsir, M., “Extended modified cubic B-spline algorithm for nonlinear Fisher’s reaction-diffusion equation”, Alex. Eng. J. 55 (2016) 28712879; doi:10.1016/j.aej.2016.06.031.CrossRefGoogle Scholar
Tamsir, M., Dhiman, N. and Srivastava, V. K., “Cubic trigonometric B-spline differential quadrature method for numerical treatment of Fisher’s reaction-diffusion equations”, Alex. Eng. J. 57 (2018) 20192026; doi:10.1016/j.aej.2017.05.007.CrossRefGoogle Scholar
Tuckwell, H. C., Introduction to theoretical neurobiology (Cambridge University Press, Cambridge, 1988).Google Scholar
Wazwaz, A. M., “The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations”, Appl. Math. Comput. 169 (2005) 321338; doi:10.1016/j.amc.2004.09.054.Google Scholar
Yadav, O. P. and Jiwari, R., “Finite element analysis and approximation of Burgers–Fisher equation”, Numer. Methods Partial Differential Equations 33 (2017) 16521677; doi:10.1002/num.22158.CrossRefGoogle Scholar
Zhang, R., Yu, X. and Zhao, G., “The local discontinuous Galerkin method for Burger’s–Huxley and Burger’s–Fisher equations”, Appl. Math. Comput. 218 (2012) 87738778; doi:10.1016/j.amc.2012.02.035.Google Scholar
Zhao, S. and Wei, G. W., “Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher’s equation”, SIAM J. Sci. Comput. 25 (2003) 127147; doi:10.1137/S1064827501390972.CrossRefGoogle Scholar
Zhu, C. G. and Kang, W. S., “Numerical solution of Burgers–Fisher equation by cubic B-spline quasi-interpolation”, Appl. Math. Comput. 216 (2010) 26792686; doi:10.1016/j.amc.2010.03.113.Google Scholar