Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T11:45:39.448Z Has data issue: false hasContentIssue false

SELF-EXCITED OSCILLATIONS IN A COLLAPSIBLE CHANNEL WITH APPLICATIONS TO RETINAL VENOUS PULSATION

Published online by Cambridge University Press:  15 August 2019

PETER S. STEWART*
Affiliation:
School of Mathematics and Statistics, The Mathematics and Statistics Building, University Place, University of Glasgow, Glasgow G12 8SQ, UK email [email protected]
ALEXANDER J. E. FOSS
Affiliation:
Department of Ophthalmology, Queen’s Medical Centre, Nottingham NG7 2UH, UK email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a theoretical model for the flow of Newtonian fluid through a long flexible-walled channel which is formed from four compliant and rigid compartments arranged alternately in series. We drive the flow using a fixed upstream flux and derive a spatially one-dimensional model using a flow profile assumption. The compliant compartments of the channel are assumed subject to a large external pressure, so the system admits a highly collapsed steady state. Using both a global (linear) stability eigensolver and fully nonlinear simulations, we show that these highly collapsed steady states admit a primary global oscillatory instability similar to observations in a single channel. We also show that in some regions of the parameter space the system admits a secondary mode of instability which can interact with the primary mode and lead to significant changes in the structure of the neutral stability curves. Finally, we apply the predictions of this model to the flow of blood through the central retinal vein and examine the conditions required for the onset of self-excited oscillation. We show that the neutral stability curve of the primary mode of instability discussed above agrees well with canine experimental measurements of the onset of retinal venous pulsation, although there is a large discrepancy in the oscillation frequency.

MSC classification

Type
Research Article
Copyright
© 2019 Australian Mathematical Society 

References

Armitstead, J. P., Bertram, C. D. and Jensen, O. E., “A study of the bifurcation behaviour of a model of flow through a collapsible tube”, Bull. Math. Biol. 58 (1996) 611641; doi:10.1007/BF02459476.Google Scholar
Band, L. R., Hall, C. L., Richardson, G., Jensen, O. E., Siggers, J. H. and Foss, A. J. E., “Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma”, Invest. Ophthalmol. Vis. Sci. 50 (2009) 37503758; doi:10.1167/iovs.08-2396.Google Scholar
Bertram, C. D. and Pedley, T. J., “A mathematical model of unsteady collapsible tube behaviour”, J. Biomech. 15 (1982) 3950; doi:10.1016/0021-9290(82)90033-1.Google Scholar
Bertram, C. D., Raymond, C. J. and Pedley, T. J., “Mapping of instabilities for flow through collapsed tubes of differing length”, J. Fluids Struct. 4 (1990) 125153; doi:10.1016/0889-9746(90)90058-D.Google Scholar
Bertram, C. D. and Tscherry, J., “The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes”, J. Fluids Struct. 22 (2006) 10291045; doi:10.1016/j.jfluidstructs.2006.07.005.Google Scholar
Cancelli, C. and Pedley, T. J., “A separated-flow model for collapsible-tube oscillations”, J. Fluid Mech. 157 (1985) 375404; doi:10.1017/S0022112085002427.Google Scholar
Coccius, E. A., Ueber die Anwendung des Augen-Spiegels: nebst Angabe eines neuen Instrumentes (I. Müller, Leipzig, 1853); https://books.google.com.au/books?id=Q8EUasKxUlgC.Google Scholar
Davies, C. and Carpenter, P. W., “Instabilities in a plane channel flow between compliant walls”, J. Fluid Mech. 352 (1997) 205243; doi:10.1017/S0022112097007313.Google Scholar
Davies, C. and Carpenter, P. W., “Numerical simulation of the evolution of Tollmien–Schlichting waves over finite compliant panels”, J. Fluid Mech. 335 (1997) 361392; doi:10.1017/S0022112096004636.Google Scholar
Garhofer, G., Werkmeister, R., Dragostinoff, N. and Schmetterer, L., “Retinal blood flow in healthy young subjects”, Invest. Ophthalmol. Vis. Sci. 53 (2012) 698703; doi:10.1167/iovs.11-8624.Google Scholar
Golzan, S. M., Graham, S. L., Leaney, J. and Avolio, A., “Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins”, Curr. Eye Res. 36 (2011) 5359; doi:10.3109/02713683.2010.530731.Google Scholar
Golzan, S. M., Kim, M. O., Seddighi, A. S., Avolio, A. and Graham, S. L., “Non-invasive estimation of cerebrospinal fluid pressure waveforms by means of retinal venous pulsatility and central aortic blood pressure”, Ann. Biomed. Eng. 40 (2012) 19401948; doi:10.1007/s10439-012-0563-y.Google Scholar
Grotberg, J. B. and Jensen, O. E., “Biofluid mechanics in flexible tubes”, Annu. Rev. Fluid Mech. 36 (2004) 121147; doi:10.1146/annurev.fluid.36.050802.121918.Google Scholar
Guidoboni, G., Harris, A., Cassani, S., Arciero, J., Siesky, B., Amireskandari, A., Tobe, L., Egan, P., Januleviciene, I. and Park, J., “Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance”, Invest. Ophthalmol. Vis. Sci. 55 (2014) 41054118; doi:10.1167/iovs.13-13611.Google Scholar
Hayreh, S. S., “The central artery of the retina. Its role in the blood supply of the optic nerve”, Br. J. Ophthalmol. 47 (1963) 651663; doi:10.1136/bjo.47.11.651.Google Scholar
Hayreh, S. S., “Non-invasive measurement of intracranial pressure”, Lancet 351 (1998) 524525; doi:10.1016/S0140-6736(05)78719-5.Google Scholar
Heil, M. and Boyle, J., “Self-excited oscillations in three-dimensional collapsible tubes: simulating their onset and large-amplitude oscillations”, J. Fluid Mech. 652 (2010) 405426; doi:10.1017/S0022112010000157.Google Scholar
Heil, M. and Hazel, A. L., “Fluid-structure interaction in internal physiological flows”, Annu. Rev. Fluid Mech. 43 (2011) 141162; doi:10.1146/annurev-fluid-122109-160703.Google Scholar
Jensen, O. E., “Instabilities of flow in a collapsed tube”, J. Fluid Mech. 220 (1990) 623659; doi:10.1017/S0022112090003408.Google Scholar
Jensen, O. E. and Heil, M., “High-frequency self-excited oscillations in a collapsible-channel flow”, J. Fluid Mech. 481 (2003) 235268; doi:10.1017/S002211200300394X.Google Scholar
Jonas, J. B., “Retinal venous pulsation and glaucoma”, Ophthalmology 112 (2005) 948949; doi:10.1016/j.ophtha.2004.11.014.Google Scholar
Jonas, J., Paques, M., Monés, J. and Glacet-Bernard, A., “Retinal vein occlusions”, in: Macular edema, Volume 47 of Dev. Opthalmol. (eds Coscas, G., Cunha-Vaz, J., Loewenstein, A. and Soubrane, G.), (Karger, Basel, 2010) 111135; doi:10.1159/000320076.Google Scholar
Knowlton, F. P. and Starling, E. H., “The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart”, J. Physiol. 44(3) (1912) 206219; doi:10.1113/jphysiol.1912.sp001511.Google Scholar
Kramer, M. O., “Boundary layer stabilization by distributed damping”, J. Amer. Soc. Naval Eng. 72 (1960) 2534; doi:10.1111/j.1559-3584.1960.tb02356.x.Google Scholar
Levin, B. E., “The clinical significance of spontaneous pulsations of the retinal vein”, Arch. Neurol. 35 (1978) 3740; doi:10.1001/archneur.1978.00500250041009.Google Scholar
Levine, D. N., “Spontaneous pulsation of the retinal veins”, Microvas. Res. 56 (1998) 154165; doi:10.1006/mvre.1998.2098.Google Scholar
Luo, X. Y., Cai, Z. X., Li, W. G. and Pedley, T. J., “The cascade structure of linear instability in collapsible channel flows”, J. Fluid Mech. 600 (2008) 4576; doi:10.1017/S0022112008000293.Google Scholar
Luo, X. Y. and Pedley, T. J., “A numerical simulation of unsteady flow in a two-dimensional collapsible channel”, J. Fluid Mech. 314 (1996) 191225; doi:10.1017/S0022112096000286.Google Scholar
Luo, X. Y. and Pedley, T. J., “The effects of wall inertia on flow in a two-dimensional collapsible channel”, J. Fluid Mech. 363 (1998) 253280; doi:10.1017/S0022112098001062.Google Scholar
McClurken, M. E., Kececioglu, I., Kamm, R. D. and Shapiro, A. H., “Steady, supercritical flow in collapsible tubes. Part 2. Theoretical studies”, J. Fluid Mech. 109 (1981) 391415; doi:10.1017/S0022112081001134.Google Scholar
Moghimi, S., Hosseini, H., Riddle, J., Lee, G. Y., Bitrian, E., Giaconi, J., Caprioli, J. and Nouri-Mahdavi, K., “Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy”, Invest. Ophthalmol. Vis. Sci. 53 (2012) 45194530; doi:10.1167/iovs.11-8362.Google Scholar
Morgan, W. H., Hazelton, M. L., Azar, S. L., House, P. H., Yu, D.-Y., Cringle, S. J. and Balaratnasingam, C., “Retinal venous pulsation in glaucoma and glaucoma suspects”, Ophthalmology 111 (2004) 14891494; doi:10.1016/j.ophtha.2003.12.053.Google Scholar
Morgan, W. H., Hazelton, M. L. and Yu, D.-Y., “Retinal venous pulsation: expanding our understanding and use of this enigmatic phenomenon”, Prog. Ret. Eye Res. 55 (2016) 82107; doi:10.1016/j.preteyeres.2016.06.003.Google Scholar
Morgan, W. H., Yu, D.-Y. and Balaratnasingam, C., “The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc”, J. Glaucoma 17 (2008) 408413; doi:10.1097/IJG.0b013e31815c5f7c.Google Scholar
Pedley, T. J., The fluid mechanics of large blood vessels (Cambridge University Press, Cambridge, 1980); doi:10.1017/CBO9780511896996.Google Scholar
Pihler-Puzović, D. and Pedley, T. J., “Flutter in a quasi-one-dimensional model of a collapsible channel”, Proc. R. Soc. Lond. Ser. A 470 (2014) 20140015; doi:10.1098/rspa.2014.0015.Google Scholar
Sen, P. K., Carpenter, P. W., Hedge, S. and Davies, C., “A wave driver theory for vortical waves propagating across junctions with application to those between rigid and compliant walls”, J. Fluid Mech. 625 (2009) 146; doi:10.1017/S0022112008005545.Google Scholar
Singh, S. and Dass, R., “The central artery of the retina I. Origin and course”, Br. J. Ophthalmol. 44 (1960) 193212; doi:10.1136/bjo.44.4.193.Google Scholar
Singh, S. and Dass, R., “The central artery of the retina II. A study of its distribution and anastomoses”, Br. J. Ophthalmol. 44 (1960) 280299; doi:10.1136/bjo.44.5.280.Google Scholar
Stewart, P. S., “Instabilities in flexible channel flow with large external pressure”, J. Fluid Mech. 825 (2017) 922960; doi:10.1017/jfm.2017.404.Google Scholar
Stewart, P. S., Heil, M., Waters, S. L. and Jensen, O. E., “Sloshing and slamming oscillations in collapsible channel flow”, J. Fluid Mech. 662 (2010) 288319; doi:10.1017/S0022112010003277.Google Scholar
Stewart, P. S., Jensen, O. E. and Foss, A. J. E., “A theoretical model to allow prediction of the CSF pressure from observations of the retinal venous pulse”, Invest. Ophthalmol. Vis. Sci. 55 (2014) 63196323; doi:10.1167/iovs.14-14331.Google Scholar
Stewart, P. S., Waters, S. L. and Jensen, O. E., “Local and global instabilities of flow in a flexible-walled channel”, Eur. J. Mech. B 28 (2009) 541557; doi:10.1016/j.euromechflu.2009.03.002.Google Scholar
Walsh, T. J., Garden, J. W. and Gallagher, B., “Obliteration of retinal venous pulsations: during elevation of cerebrospinal-fluid pressure”, Amer. J. Ophthalmol. 67(6) (1969) 954956; doi:10.1016/0002-9394(69)90094-4.Google Scholar
Whittaker, R. J., Heil, M., Jensen, O. E. and Waters, S. L., “A rational derivation of a tube law from shell theory”, Quart. J. Mech. Appl. Math. 63 (2010) 465496; doi:10.1093/qjmam/hbq020.Google Scholar
Williamson, T. H., Lowe, G. D. and Baxter, G. M., “Influence of age, systemic blood pressure, smoking, and blood viscosity on orbital blood velocities”, Br. J. Ophthalmol. 79 (1995) 1722; doi:10.1136/bjo.79.1.17.Google Scholar
Wong, T. Y. and Scott, I. U., “Retinal-vein occlusion”, New Engl. J. Med. 363 (2010) 21352144; doi:10.1056/NEJMcp1003934.Google Scholar
Xie, X. et al. , “Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing intracranial and intraocular pressure (iCOP) study”, Crit. Care 17 (2013) R162; doi:10.1186/cc12841.Google Scholar
Xu, F., Billingham, J. and Jensen, O. E., “Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux”, J. Fluid Mech. 723 (2013) 706733; doi:10.1017/jfm.2013.97.Google Scholar
Xu, F., Billingham, J. and Jensen, O. E., “Resonance-driven oscillations in a flexible-channel flow with fixed upstream flux and a long downstream rigid segment”, J. Fluid Mech. 746 (2014) 368404; doi:10.1017/jfm.2014.136.Google Scholar
Xu, F. and Jensen, O. E., “A low-order model for slamming in a flexible-channel flow”, Quart. J. Mech. Appl. Math. 68 (2015) 299319; doi:10.1093/qjmam/hbv009.Google Scholar