Article contents
PREDATOR–PREY MODEL WITH AGE STRUCTURE
Published online by Cambridge University Press: 02 November 2017
Abstract
Mealybug is an important pest of cassava plant in Thailand and tropical countries, leading to severe damage of crop yield. One of the most successful controls of mealybug spread is using its natural enemies such as green lacewings, where the development of mathematical models forecasting mealybug population dynamics improves implementation of biological control. In this work, the Sharpe–Lotka–McKendrick equation is extended and combined with an integro-differential equation to study population dynamics of mealybugs (prey) and released green lacewings (predator). Here, an age-dependent formula is employed for mealybug population. The solutions and the stability of the system are considered. The steady age distributions and their bifurcation diagrams are presented. Finally, the threshold of the rate of released green lacewings for mealybug extermination is investigated.
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © 2017 Australian Mathematical Society
References
- 1
- Cited by