Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:18:42.472Z Has data issue: false hasContentIssue false

A POROUS VISCOELASTIC MODEL FOR THE CELL CYTOSKELETON

Published online by Cambridge University Press:  25 May 2018

CALINA A. COPOS*
Affiliation:
Department of Mathematics, University of California Davis, Davis, CA 95616, USA email [email protected], [email protected]
ROBERT D. GUY
Affiliation:
Department of Mathematics, University of California Davis, Davis, CA 95616, USA email [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures immersed in viscous fluids. In this work, we consider a poroelastic immersed boundary method in which a fluid permeates a porous, elastic structure of negligible volume fraction, and extend this method to include stress relaxation of the material. The porous viscoelastic method presented here is validated for a prescribed oscillatory shear and for an expansion driven by the motion at the boundary of a circular material by comparing numerical solutions to an analytical solution of the Maxwell model for viscoelasticity. Finally, an application of the modelling framework to cell biology is provided: passage of a cell through a microfluidic channel. We demonstrate that the rheology of the cell cytoplasm is important for capturing the transit time through a narrow channel in the presence of a pressure drop in the extracellular fluid.

Type
Research Article
Copyright
© 2018 Australian Mathematical Society 

References

Alt, W. and Dembo, M., “Cytoplasm dynamics and cell motion: two-phase flow models”, Math. Biosci. 156 (1999) 207228; doi:10.1016/S0025-5564(98)10067-6.Google Scholar
Biot, M. A., “General theory of three-dimensional consolidation”, J. Appl. Phys. 12 (1941) 155164; doi:10.1063/1.1712886.CrossRefGoogle Scholar
Borouchaki, H., George, P. L., Hecht, F., Laug, P. and Saltel, E., “Delaunay mesh generation governed by metric specifications. Part I: agorithms”, Finite Elem. Anal. Des. 25 (1997) 6183; doi:10.1016/S0168-874X(96)00057-1.CrossRefGoogle Scholar
Cogan, N. G. and Guy, R. D., “Multiphase flow models of biogels from crawling cells to bacterial biofilms”, HFSP J. 4 (2010) 1125; doi:10.2976/1.3291142.Google Scholar
Cortez, R., “The method of regularized Stokeslets”, SIAM J. Sci. Comput. 23 (2001) 12041225; doi:0.1137/S106482750038146X.CrossRefGoogle Scholar
Cortez, R., Cowen, N., Fauci, L. and Dillion, R., “Simulation of swimming organisms: coupling internal mechanics with external fluid dynamics”, Comput. Sci. Eng. 6 (2004) 3845; doi:10.1109/MCISE.2004.1289307.Google Scholar
Devendran, D. and Peskin, C. S., “An immersed boundary energy-based method for incompressible viscoelasticity”, J. Comput. Phys. 231 (2012) 46134642; doi:10.1016/j.jcp.2012.02.020.Google Scholar
Dillion, R. and Fauci, L., “An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating”, J. Theoret. Biol. 207 (2000) 415430; doi:10.1006/jtbi.2000.2182.Google Scholar
Dillion, R., Fauci, L., Fogelson, A. and Gaver, D., “Modeling biofilm processes using the immersed boundary method”, J. Comput. Phys. 129 (1996) 5773; doi:10.1006/jcph.1996.0233.Google Scholar
Étienne, J., Hinch, E. J. and Li, J., “A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material”, J. Non-Newtonian Fluid Mech. 136 (2006) 157166; doi:10.1016/j.jnnfm.2006.04.003.CrossRefGoogle Scholar
Gardel, M. L., Kasza, K. E., Brangwyne, C. P., Liu, J. and Weitz, D. A., “Mechanical response of cytoskeletal networks”, Methods Cell Biol. 89 (1989) 487519; doi:10.1016/S0091-679X(08)00619-5.CrossRefGoogle Scholar
Gracheva, M. and Othmer, H., “A continuum model of motility in ameboid cells”, Bull. Math. Biol. 66 (2004) 167193; doi:10.1016/j.bulm.2003.08.007.CrossRefGoogle ScholarPubMed
Harlen, O. G., Rallison, J. M. and Szabo, P., “A split Lagrangian–Eulerian method for simulating transient viscoelastic flows”, J. Non-Newtonian Fluid Mech. 60 (1995) 81104; doi:10.1016/0377-0257(95)01381-5.Google Scholar
Hecht, F., “bamg: Bidimensional anisotropic mesh generator”, Technical Report, INRIA, Rocquencourt, France, 1997; http://www.ann.jussieu.fr/hecht/ftp/bamg/.Google Scholar
Heuzé, M. L., Collin, O., Terriac, E., Lennon-Duménil, A. M. and Piel, M., “Cell migration in confinement: a micro-channel-based assay”, in: Cell migration. (Developmental Methods and Protocols), Volume 769 of Methods in Molecular Biology (eds Wells, C. M. and Parsons, M.), (Humana Press, New York, 2011) 415434.CrossRefGoogle Scholar
Joseph, D. D., Fluid dynamics of viscoelastic liquid, 1st edn (Springer, New York, 1990).Google Scholar
Levine, A. J. and MacKintosh, F. C., “The mechanics and fluctuation spectrum of active gels”, J. Phys. Chem. 113 (2009) 38203820; doi:10.1021/jp808192w.Google Scholar
Lewis, O. L., Zhang, S., Guy, R. D. and del Álamo, J. C., “Coordination of contractility, adhesion and flow in migrating Physarum amoebae”, J. R. Soc. Interface 12 (2015) 112; doi:10.1098/rsif.2014.1359.Google Scholar
Malvern, L. E., Introduction to the mechanics of a continuous medium, 1st edn (Prentice Hall, New York, 1977).Google Scholar
Mitchison, T. J., Charras, G. T. and Mahadevan, L., “Implications of a poroelastic cytoplasm for the dynamics of animal cell shape”, Semin. Cell Dev. Biol. 19 (2008) 215223; doi:10.1016/j.semcdb.2008.01.008.CrossRefGoogle ScholarPubMed
Mofrad, M. R. K., “Rheology of the cytoskeleton”, Annu. Rev. Fluid Mech. 41 (2009) 433453; doi:10.1146/annurev.fluid.010908.165236.CrossRefGoogle Scholar
Nam, S., Hu, K. H., Butte, M. J. and Chaudhuri, O., “Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels”, Proc. Natl. Acad. Sci. USA 113 (2016) 54925497; doi:10.1073/pnas.1523906113.CrossRefGoogle ScholarPubMed
Persson, P. and Strang, G., “A simple mesh generator in Matlab”, SIAM Rev. 46 (2004) 329345; doi:10.1137/S0036144503429121.CrossRefGoogle Scholar
Peskin, C. S., “Numerical analysis of blood flow in the heart”, J. Comput. Phys. 25 (1977) 220252; doi:10.1016/0021-9991(77)90100-0.Google Scholar
Strychalski, W., Copos, C. A., Lewis, O. L. and Guy, R. D., “A poroelastic immersed boundary method with applications to cell biology”, J. Comput. Phys. 282 (2015) 7797; doi:10.1016/j.jcp.2014.10.004.CrossRefGoogle Scholar
Strychalski, W. and Guy, R. D., “Intracellular pressure dynamics in blebbing cells”, Biophys. J. 110 (2016) 11681179; doi:10.1016/j.bpj.2016.01.012.Google Scholar
Wróbel, J. K., Fauci, L. and Cortez, R., “Modeling viscoelastic networks in Stokes flow”, Phys. Fluids 11 (2014) 113102; doi:10.1063/1.4900941.Google Scholar