Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T10:19:03.671Z Has data issue: false hasContentIssue false

PENETRATION OF SPHERICAL GOLD NANOPARTICLE INTO A LIPID BILAYER

Published online by Cambridge University Press:  19 August 2015

D. BAOWAN*
Affiliation:
Department of Mathematics, Faculty of Science, Mahidol University, Rama VI Rd., Thailand Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Safety issues for the use of products containing nanoparticles need to be considered, since these nanoparticles may break through human skin to damage cells. In this paper, applied mathematical techniques are used to model the penetration of a spherical gold nanoparticle into an assumed circular hole in a lipid bilayer. The 6–12 Lennard-Jones potential is employed, and the total molecular interaction energy is obtained using the continuous approximation. Nanoparticles of three different radii, namely, 10, 15 and 20 Å, are studied, which are initiated at rest, confined to the axis of the hole. A similar behaviour for these three cases is observed. The critical hole radii at which these nanoparticles enter the bilayer are 12.65, 17.62 and 22.60 Å, respectively. Further, once the hole radii become larger than 20.79, 23.14 and 27.02 Å, respectively, the gold nanoparticles tend to remain at the mid-plane of the bilayer, and do not pass through the bilayer.

Type
Research Article
Copyright
© 2015 Australian Mathematical Society 

References

Baowan, D., Cox, B. J. and Hill, J. M., “Instability of $\text{C}_{60}$ fullerene interacting with lipid bilayer”, J. Mol. Model. 18 (2012) 549557; doi:10.1007/s00894-011-1086-4.CrossRefGoogle Scholar
Baowan, D., Peuschel, H., Kraegeloh, A. and Helms, V., “Energetics of liposomes encapsulating silica nanoparticles”, J. Mol. Model. 19 (2013) 24592472; doi:10.1007/s00894-013-1784-1.CrossRefGoogle ScholarPubMed
Berger, O., Edholm, O. and Jahnig, F., “Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure and constant temperature”, Biophys. J. 72 (1997) 20022013; doi:10.1016/S0006-3495(97)78845-3.CrossRefGoogle ScholarPubMed
Bhattacharya, R., Patra, C. R., Earl, A., Wang, S., Katarya, K., Lu, L., Kizhakkedathu, J. N., Yaszemski, M. J., Greipp, P. R., Mukhopadhyay, D. and Mukherjee, P., “Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells”, Nanomedicine 3 (2007) 224238; doi:10.1016/j.nano.2007.07.001.CrossRefGoogle Scholar
Chen, P. C., Mwakwari, S. C. and Oyelere, A. K., “Gold nanoparticles: from nanomedicine to nanosensing”, Nanotechnol. Sci. Appl. 1 (2008) 4566; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781743.Google ScholarPubMed
Chithrani, B. D., Ghazani, A. A. and Chan, W. C. W., “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells”, Nano Lett. 6 (2006) 662668 doi:10.1021/nl052396o.CrossRefGoogle ScholarPubMed
Colvin, V. L., “The potential environmental impact of engineered nanomaterials”, Nat. Biotechnol. 21 (2003) 11661170; doi:10.1038/nbt875.CrossRefGoogle ScholarPubMed
DeVane, R., Jusufi, A., Shinoda, W., Chiu, C.-C., Nielsen, S. O., Moore, P. B. and Klein, M. L., “Parametrization and application of a coarse grained force field for benzene/fullerene interactions with lipids”, J. Phys. Chem. B 114 (2010) 1636416372; doi:10.1021/jp1070264.CrossRefGoogle ScholarPubMed
Ghosh, P., Han, G., De, M., Kim, C. K. and Rotello, V. M., “Gold nanoparticles in delivery applications”, Adv. Drug Deliv. Rev. 60 (2008) 13071315; doi:10.1016/j.addr.2008.03.016.CrossRefGoogle ScholarPubMed
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, 7th edn, (Academic Press, San Diego, MA, 2007).Google Scholar
Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B., Molecular theory of gases and liquids (John Wiley, New York, 1954).Google Scholar
Jain, P. K., El-Sayed, I. H. and El-Sayed, M. A., “Au nanoparticles target cancer”, Nano Today 2 (2007) 1829; doi:1016/S1748-0132(07)70016-6.CrossRefGoogle Scholar
Lewis, B. A. and Engelman, D. M., “Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles”, J. Mol. Biol. 166 (1983) 211217 doi:10.1016/S0022-2836(83)80007-2.CrossRefGoogle ScholarPubMed
Lin, J., Zhang, H., Chen, Z. and Zheng, Y., “Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity and their relationship”, ACS Nano 4 (2010) 54215429; doi:10.1021/nn1010792.CrossRefGoogle ScholarPubMed
Marrink, S. J., de Vries, A. H. and Mark, A. E., “Coarse grained model for semiquantitative lipid simulations”, J. Phys. Chem. B 108 (2004) 750760; doi:10.1021/jp036508g.CrossRefGoogle Scholar
Nel, A., Xia, T., Mädler, L. and Li, N., “Toxic potential of materials at the nanolevel”, Science 311 (2006) 622627; doi:10.1126/science.1114397.CrossRefGoogle ScholarPubMed
Pissuwan, D., Niidome, T. and Cortie, M. B., “The forthcoming applications of gold nanoparticles in drug and gene delivery systems”, J. Control. Release 149 (2011) 6571 doi:10.1016/j.jconrel.2009.12.006.CrossRefGoogle ScholarPubMed
Pissuwan, D., Valenzuela, S. M., Killingsworth, M. C., Xu, X. and Cortie, M. B., “Targeted destruction of murine macrophage cells with bioconjugated gold nanorods”, J. Nanopart. Res. 9 (2007) 11091124; doi:10.1007/s11051-007-9212-z.CrossRefGoogle Scholar
Pu, Q., Leng, Y., Zhao, X. and Cummings, P. T., “Molecular simulations of stretching gold nanowires in solvents”, Nanotechnology 18 (2007) 424007; doi:10.1088/0957-4484/18/42/424007.CrossRefGoogle ScholarPubMed
Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. and Evans, E., “Effect of chain length and unsaturation on elasticity of lipid bilayers”, Biophys. J. 79 (2000) 328339 doi:10.1016/S0006-3495(00)76295-3.CrossRefGoogle ScholarPubMed
Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandyopadhyay, S., Moore, P. B. and Klein, M. L., “Simulations of phospholipids using a coarse grain model”, J. Phys. Chem. B 105 (2001) 97859792; doi:10.1021/jp011637n.CrossRefGoogle Scholar
Shinoda, W., DeVane, R. and Klein, M. L., “Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field”, J. Phys. Chem. B 114 (2010) 68366849; doi:10.1021/jp9107206.CrossRefGoogle ScholarPubMed
Thomas, T., Thomas, K., Sadrieh, N., Savage, N., Adair, P. and Bronaugh, R., “Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials”, Toxicol. Sci. 91 (2006) 1419; doi:10.1093/toxsci/kfj129.CrossRefGoogle ScholarPubMed
Wallace, E. J. and Sansom, M. S. P., “Carbon nanotube/detergent interactions via coarse-grained molecular dynamics”, Nano Lett. 7 (2007) 19231928; doi:10.1021/nl070602h.CrossRefGoogle ScholarPubMed
Yang, K. and Ma, Y.-Q., “Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer”, Nat. Nanotechnol. 5 (2010) 579583; doi:10.1038/nnano.2010.141.CrossRefGoogle ScholarPubMed