Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T08:51:00.508Z Has data issue: false hasContentIssue false

OPTIMAL CONTROL PROBLEMS FOR GENERAL GLOBAL HYBRID DYNAMICAL SYSTEMS WITH MATRIX COST FUNCTIONAL

Published online by Cambridge University Press:  04 October 2010

RUI GAO*
Affiliation:
School of Control Science & Engineering, Shandong University, 250061 Ji’nan, PR China (email: [email protected])
XINZHI LIU
Affiliation:
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (email: [email protected])
*
For correspondence; e-mail: [email protected]]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper considers an optimal control problem for a class of controlled hybrid dynamical systems (HDSs) with prescribed switchings. By using Ekeland’s variational principle and a matrix cost functional, a minimum principle for HDSs is derived, which provides a necessary condition of the aforementioned problem. The results given in this paper include both pure continuous systems and pure discrete-time systems as special cases.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2010

References

[1]Baotic, M., Christophersen, F. J. and Morari, M., “Constrained optimal control of hybrid systems with a linear performance index”, IEEE Trans. Automat. Control 51 (2006) 19031919.CrossRefGoogle Scholar
[2]Bemporad, A. and Morari, M., “Control of systems integrating logic, dynamics, and constraints”, Automatica 35 (1999) 407427.CrossRefGoogle Scholar
[3]Bengea, S. C. and DeCarlo, R. A., “Optimal control of switching systems”, Automatica 41 (2005) 1127.Google Scholar
[4]Borrelli, G., Baotic, M., Bemporad, A. and Morari, M., “Dynamic programming for constrained optimal control of discrete-time linear hybrid systems”, Automatica 41 (2006) 17091721.CrossRefGoogle Scholar
[5]Branicky, M. S., “Studies in hybrid systems: modeling, analysis and control”, Ph.D. Dissertation, Massachusetts Institute of Technology, 1995.Google Scholar
[6]Branicky, M. S., “Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Automat. Control 43 (1998) 475482.CrossRefGoogle Scholar
[7]Branicky, M. S., Borkar, V. S. and Mitter, S. K., “A unified framework for hybrid control: model and optimal control theory”, IEEE Trans. Automat. Control 43 (1998) 3145.CrossRefGoogle Scholar
[8]Cassandras, C. G., Pepyne, D. L. and Wardi, Y., “Optimal control of a class of hybrid systems”, IEEE Trans. Automat. Control 46 (2001) 398415.CrossRefGoogle Scholar
[9]Chai, C. H. and Teel, A. R., “Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness”, IEEE Trans. Automat. Control 54 (2006) 12641277.Google Scholar
[10]Gao, R. and Wang, Y. Z., “Study on optimal control of HDS by Ekeland’s variational principle”, Chin. J. Electron. 15 (2006) 487491.Google Scholar
[11]Gao, R., Wang, L. and Wang, Y. Z., “Study of optimal control problems for hybrid dynamical systems”, J. Syst. Eng. Electron. 17 (2006) 147155.Google Scholar
[12]Giua, A., Seatzu, C. and Van Der Mee, C., “Optimal control of switched autonomous linear systems”, Proceedings of the 40th IEEE Conference on Decision & Control 12 (2001) 24722477.Google Scholar
[13]Gokbayrak, K. and Selvi, O., “Optimal hybrid control of a two-stage manugacturing system”, in Proceedings of the 2006 American Control Conference, 2006, 33643369.Google Scholar
[14]Guan, Z. H., Hill, D. J. and Shen, X. M., “On hybrid impulsive and switching systems and application to nonlinear control”, IEEE Trans. Automat. Control 50 (2005) 10581062.CrossRefGoogle Scholar
[15]Hedlund, S. and Rantzer, A., “Optimal control of hybrid systems”, Proceedings of the 38th IEEE Conference on Decision & Control 10 (1999) 39723976.Google Scholar
[16]Lazar, M., Heemels, W. P. M. H., Weiland, S. and Bemporad, A., “Stabilizing model predictive control of hybrid systems”, IEEE Trans. Automat. Control 51 (2006) 18131818.CrossRefGoogle Scholar
[17]Liu, X. Z. and Shen, J. H., “Stability theory of hybrid dynamical systems with time delay”, IEEE Trans. Automat. Control 54 (2006) 620625.CrossRefGoogle Scholar
[18]Liu, Y., Teo, K. L., Jennings, L. S. and Wang, S., “On a class of optimal control problems with state jumps”, J. Optim. Theory Appl. 98 (1998) 6582.CrossRefGoogle Scholar
[19]Loxton, R. C., Teo, K. L. and Rehbock, V., “Computational method for a class of switched system optimal control problems”, IEEE Trans. Automat. Control 54 (2009) 24552460.CrossRefGoogle Scholar
[20]Loxton, R. C., Teo, K. L., Rehbock, V. and Ling, W. K., “Optimal switching instants for a switched-capacitor DC/DC power converter”, Automatica 45 (2009) 973980.CrossRefGoogle Scholar
[21]Margaliot, M., “Stability analysis of switched systems using variational principles: an introduction”, Automatica 42 (2006) 20592077.CrossRefGoogle Scholar
[22]Meng, B. and Zhang, J. F., “Output feedback based admissible control of switched linear singular system”, Acta Automat. Sinica 32 (2006) 179185.Google Scholar
[23]Michel, A. N. and Hu, B., “Towards a stability theory of general hybrid dynamical systems”, Automatica 35 (1999) 371384.CrossRefGoogle Scholar
[24]Pepyne, D. L. and Cassandras, C. G., “Modeling analysis and optimal control of a class of hybrid systems”, Discrete Event Dyn. Syst. 8 (1998) 175201.CrossRefGoogle Scholar
[25]Pepyne, D. L. and Cassandras, C. G., “Optimal control of hybrid systems in manufacturing”, Proc. IEEE 88 (2000) 11081123.CrossRefGoogle Scholar
[26]Schutter, B. D., “Optimal control of a class of linear hybrid systems with saturation”, Proceedings of the 38th IEEE Conference on Decision & Control 10 (1999) 39783983.Google Scholar
[27]Shaikh, M. S. and Caines, P. E., “On the hybrid optimal control problem: theory and algorithms”, IEEE Trans. Automat. Control 52 (2007) 15871603.CrossRefGoogle Scholar
[28]Spinelli, W., Bolzern, P. and Colaneri, P., “A note on optimal control of autonomous switched systmes on a finite time interval”, in Proceedings of the 2006 American Control Conference, 2006, 59485952.Google Scholar
[29]Stikkel, G., Bokaor, J. and Szabo, Z., “Necessary and sufficient condition for the controllability of switching linear hybrid systems”, Automatica 40 (2004) 10931097.CrossRefGoogle Scholar
[30]Sun, Y., Michel, A. N. and Zhai, G. S., “Stability of discontinuous retarded functional differential equations with applications”, IEEE Trans. Automat. Control 50 (2005) 10901105.CrossRefGoogle Scholar
[31]Tan, S. P., Zhang, J. F. and Yao, L. L., “Optimality analysis of adaptive sampled control of hybrid systems with quadratic index”, IEEE Trans. Automat. Control 50 (2005) 10441051.Google Scholar
[32]Trecate, G. F., Cuzzola, F. A., Mignone, D. and Morari, M., “Analysis of discrete-time piecewise affine and hybrid systems”, Automatica 38 (2002) 21392146.CrossRefGoogle Scholar
[33]Xu, X. P. and Zhai, G. S., “Practical stability and stabilization of hybrid and switched systems”, IEEE Trans. Automat. Control 50 (2005) 18971903.Google Scholar
[34]Yang, Z. Y., “An algebraic approach towards the controllability of controlled switching linear hybrid systems”, Automatica 38 (2002) 12211228.CrossRefGoogle Scholar
[35]Ye, H., Michel, A. N. and Hou, L., “Stability theory for hybrid dynamical systems”, IEEE Trans. Automat. Control 43 (1998) 461474.CrossRefGoogle Scholar
[36]Zhang, X. M., Li, X. J. and Chen, Z. H., The differential equation theory of optimal control systems, 1st edn (Higher Education Press, Beijing, 1989).Google Scholar