Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T09:14:27.307Z Has data issue: false hasContentIssue false

OPTIMAL CONTROL OF MULTIPLE-TIME DELAYED SYSTEMS BASED ON THE CONTROL PARAMETERIZATION METHOD

Published online by Cambridge University Press:  29 May 2012

W. H. GUI
Affiliation:
School of Information Science and Engineering, Central South University, Changsha, 410083, PR China (email: [email protected], [email protected], [email protected], [email protected])
X. Y. SHEN
Affiliation:
School of Information Science and Engineering, Central South University, Changsha, 410083, PR China (email: [email protected], [email protected], [email protected], [email protected])
N. CHEN*
Affiliation:
School of Information Science and Engineering, Central South University, Changsha, 410083, PR China (email: [email protected], [email protected], [email protected], [email protected])
C. H. YANG
Affiliation:
School of Information Science and Engineering, Central South University, Changsha, 410083, PR China (email: [email protected], [email protected], [email protected], [email protected])
L. Y. WANG
Affiliation:
School of Electrical Engineering and Renewable Energy, China Three Gorges University, Yichang, 443002, PR China (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study optimal control computation based on the control parameterization method for a class of optimal control problems involving nonlinear systems with multiple time delays subject to continuous state inequality constraints. Both the state and the control are allowed to have different time delays, and they are uncorrelated in this system. The control of the dynamical system is approximated by a piecewise constant function whose heights are taken as decision vectors. The formulae for computing the gradients of the cost and constraint functions are then derived. Based on this, a computational method for finding the optimal control is developed by utilizing the Sequential Quadratic Programming (SQP) algorithm with an active set strategy. The computational method is applied to an industrial problem arising in the purification process of zinc hydrometallurgy. Numerical simulation shows that the amount of zinc powder that is needed can be decreased significantly, thus avoiding wastage of resources.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2012

References

[1]Basin, M. and Rodriguez-Gonzalez, J., “Optimal control for linear systems with multiple time delays in control input”, IEEE Trans. Automat. Control 51 (2006) 9197; doi:10.1109/TAC.2005.861718.CrossRefGoogle Scholar
[2]Biegler, L. T., “Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation”, Comput. Chem. Eng. 8 (1984) 243247; doi:10.1016/0098-1354(84)87012-X.CrossRefGoogle Scholar
[3]Biegler, L. T. and Grossmann, I. E., “Retrospective on optimization”, Comput. Chem. Eng. 28 (2004) 11691192; doi:10.1016/j.compchemeng.2003.11.003.CrossRefGoogle Scholar
[4]Chachuat, B., Mitsos, A. and Barton, P. I., “Optimal design and steady-state operation of micro power generation employing fuel cells”, Chem. Eng. Sci. 60 (2005) 45354556; doi:10.1016/j.ces.2005.02.053.CrossRefGoogle Scholar
[5]Dreher, T. M., Nelson, A., Demopoulos, G. P. and Filippou, D., “The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives”, Hydrometallurgy 60 (2001) 105116; doi:10.1016/S0304-386X(00)00152-3.CrossRefGoogle Scholar
[6]Liu, C., Gong, Z., Feng, E. and Yin, H., “Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture”, J. Ind. Manag. Optim. 5 (2009) 835850; doi:10.3934/jimo.2009.5.835.CrossRefGoogle Scholar
[7]Loxton, R. C., Teo, K. L. and Rehbock, V., “Optimal control problems with multiple characteristic time points in the objective and constraints”, Automatica 44 (2008) 29232929; doi:10.1016/j.automatica.2008.04.011.CrossRefGoogle Scholar
[8]Loxton, R. C., Teo, K. L., Rehbock, V. and Yiu, K. F. C., “Optimal control problems with a continuous inequality constraint on the state and the control”, Automatica 45 (2009) 22502257; doi:10.1016/j.automatica.2009.05.029.CrossRefGoogle Scholar
[9]Luus, R., “Optimal control by dynamic programming using accessible grid points and region contraction”, Hungar. J. Ind. Chem. 17 (1989) 523543.Google Scholar
[10]Martin, R. B. and Teo, K. L., Optimal control of drug administration in cancer chemotherapy (World Scientific, Singapore, 1994).Google Scholar
[11]Rajesh, J., Gupta, K., Kusumakar, H. S., Jayaraman, V. K. and Kulkarni, B. D., “Dynamic optimization of chemical processes using ant colony framework”, Comput. Chem. 25 (2001) 583595; doi:10.1016/S0097-8485(01)00081-X.CrossRefGoogle ScholarPubMed
[12]Rehbock, V. and Livk, I., “Optimal control of a batch crystallization process”, J. Ind. Manag. Optim. 3 (2007) 585596; doi:10.3934/jimo.2007.3.585.CrossRefGoogle Scholar
[13]Rehbock, V., Teo, K. L. and Jennings, L. S., “Suboptimal feedback control for a class of nonlinear systems using spline interpolation”, Discrete Contin. Dyn. Syst. 1 (1995) 223236; doi:10.3934/dcds.1995.1.223.CrossRefGoogle Scholar
[14]Richardson, S. and Wang, S., “The viscosity approximation to the Hamilton–Jacobi–Bellman equation in optimal feedback control: upper bounds for extended domains”, J. Ind. Manag. Optim. 6 (2010) 161175; doi:10.3934/jimo.2010.6.161.CrossRefGoogle Scholar
[15]Schittkowski, K., “NLPQLP: A Fortran implementation of a sequential quadratic programming algorithm with distributed and nonmonotone line search—User’s guide, version 2.0”, University of Bayreuth, 2004.Google Scholar
[16]Teo, K. L. and Goh, C. J., “A computational method for combined optimal parameter selection and optimal control problems with general constraints”, J. Aust. Math. Soc. Ser. B 30 (1989) 350364; doi:10.1017/S0334270000006299.CrossRefGoogle Scholar
[17]Teo, K. L., Goh, C. J. and Wong, K. H., A unified computational approach to optimal control problems (Longman Scientific and Technical, New York, 1991).Google Scholar
[18]Teo, K. L. and Jennings, L. S., “Nonlinear optimal control problems with continuous state inequality constraints”, J. Optim. Theory Appl. 63 (1989) 122; doi:10.1007/BF00940727.CrossRefGoogle Scholar
[19]Teo, K. L., Jennings, L. S., Lee, H. W. J. and Rehbock, V., “The control parameterization enhancing transform for constrained optimal control problems”, J. Aust. Math. Soc. Ser. B 40 (1999) 314335; doi:10.1017/S0334270000010936.CrossRefGoogle Scholar
[20]Teo, K. L., Rehbock, V. and Jennings, L. S., “A new computational algorithm for functional inequality constrained optimization problems”, Automatica 29 (1993) 789792; doi:10.1016/0005-1098(93)90076-6.CrossRefGoogle Scholar
[21]Wang, L. Y., Gui, W. H., Teo, K. L., Loxton, R. C. and Yang, C. H., “Time delayed optimal control problems with multiple characteristic time points: computation and industrial applications”, J. Ind. Manag. Optim. 5 (2009) 705718; doi:10.3934/jimo.2009.5.705.CrossRefGoogle Scholar
[22]Wong, K. H., Clements, D. J. and Teo, K. L., “Optimal control computation for nonlinear time-lag systems”, J. Optim. Theory Appl. 47 (1985) 91107; doi:10.1007/BF00941318.CrossRefGoogle Scholar
[23]Wu, C. Z. and Teo, K. L., “Global impulsive optimal control computation”, J. Ind. Manag. Optim. 2 (2006) 435450; doi:10.3934/jimo.2006.2.435.CrossRefGoogle Scholar
[24]Wu, C. Z., Teo, K. L. and Rehbock, V., “Optimal control of piecewise affine systems with piecewise affine state feedback”, J. Ind. Manag. Optim. 5 (2009) 737747; doi:10.3934/jimo.2009.5.737.CrossRefGoogle Scholar
[25]Zhang, Q. F., Zhang, Y. G. and Guo, Y. H., “Effect of zinc powder size for cobalt removal from zinc sulphate solution on unit consumption”, Nonferrous Smelting 28 (1999) 3031 (in Chinese).Google Scholar