Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T17:24:14.843Z Has data issue: false hasContentIssue false

ONE-DIMENSIONAL CHAOTIC LAMINAR FLOW WITH COMPETITIVE EXOTHERMIC AND ENDOTHERMIC REACTIONS

Published online by Cambridge University Press:  15 April 2020

S. D. WATT*
Affiliation:
School of Science, UNSW Canberra, Canberra2600, ACT, Australia; e-mail: [email protected], [email protected], [email protected]
Z. HUANG
Affiliation:
School of Science, UNSW Canberra, Canberra2600, ACT, Australia; e-mail: [email protected], [email protected], [email protected]
H. S. SIDHU
Affiliation:
School of Science, UNSW Canberra, Canberra2600, ACT, Australia; e-mail: [email protected], [email protected], [email protected]
A. C. MCINTOSH
Affiliation:
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK; e-mail: [email protected]
J. BRINDLEY
Affiliation:
Department of Mathematics, University of Leeds, Leeds, LS2 9JT, UK; e-mail: [email protected]

Abstract

We consider the numerical solution of competitive exothermic and endothermic reactions in the presence of a chaotic advection flow. The resulting behaviour is characterized by a strong dependence on the competitive reaction history. The burnt temperature is not immediately connected to simple enthalpy calculations, so there is a subtlety in the interplay between the major parameters, notably the Damköhler number, the ratio of the heats of exothermic and endothermic reactions, as well as the ratio of their respective activation energies. This paper seeks to explore the way these parameters affect the steady states of these reaction fronts and their stability.

MSC classification

Type
Research Article
Copyright
© 2020 Australian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, H., “Stirring by chaotic advection”, J. Fluid Mech. 143 (1984) 121; 10.1017/S0022112084001233.Google Scholar
Ball, R., McIntosh, A. C. and Brindley, J., “Thermokinetic models for simultaneous reactions: a comparative study”, Combust. Theory Model. 3 (1999) 447468; doi:10.1088/1364-7830/3/3/302.Google Scholar
Buckmaster, J. and Mikolaitis, D., “The premixed flame in a counterflow”, Comb. Flame 47 (1982) 191204; doi:10.1016/0010-2180(82)90100-6.Google Scholar
Clifford, M. J., Cox, S. M. and Robert, E. P. L., “Lamellar modelling of reaction, diffusion and mixing in a two-dimensional flow”, Chem. Engng J. 71 (1998) 4956; doi:10.1016/S1385-8947(98)00107-7.Google Scholar
de Anna, P., Dentz, M., Tartakovsky, A. and Le Borgne, T., “The filamentary structure of mixing fronts and its control on reaction kinetics in porous media flows”, Geophys. Res. Lett. 41 (2014) 45864593; doi:10.1002/2014GL060068.Google Scholar
Gubernov, V. V., Kolobov, A. V., Polezhaev, A. A., Sidhu, H. S., McIntosh, A. C. and Brindley, J., “Stabilization of combustion wave through the competitive endothermic reaction”, Proc. Roy. Soc. Lond. A 471(2180) (2015) 112; doi:10.1098/rspa.2015.0293.Google Scholar
Gubernov, V. V., Sharples, J. J., Sidhu, H. S., McIntosh, A. C. and Brindley, J., “Properties of combustion waves in the model with competitive exo- and endothermic reactions”, J. Math. Chem. 50 (2012) 21302140; doi:10.1007/s10910-012-0021-y.Google Scholar
Guckenheimer, J. and Holmes, P. J., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer, New York, 1983); doi:10.1007/978-1-4612-1140-2.Google Scholar
Hmaidi, A., McIntosh, A. C. and Brindley, J., “A mathematical model of hotspot condensed phase ignition in the presence of a competitive endothermic reaction”, Combust. Theory Model. 14 (2010) 893920; doi:10.1080/13647830.2010.519050.Google Scholar
Kiss, I. Z., Merkin, J. H. and Neufeld, Z., “Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction”, Phys. Rev. E 70 (2004) 026216–1026216–11; doi:10.1103/PhysRevE.70.026216.Google Scholar
Kiss, I. Z., Merkin, J. H., Scott, S. K., Simon, P. L., Kalliadasis, S. and Neufeld, Z., “The structure of flame filaments in chaotic flows”, Physica D 176 (2003) 6781; doi:10.1016/S0167-2789(02)00741-8.Google Scholar
Le Borgne, T., Dentz, M. and Villermaux, E., “Stretching, coalescence and mixing in porous media”, Phys. Rev. Lett. 110 (2013) 204501-1204501-5; doi:10.1103/PhysRevLett.110.204501.Google Scholar
Lester, D. R., Metcalfe, G. and Trefry, M. G., “Is chaotic advection inherent to porous media flow?”, Phys. Rev. Lett. 111 (2013) 174101-1174101-5; doi:10.1103/PhysRevLett.111.174101.Google Scholar
Manelis, G. B., Nazin, G. M., Rubtsov, Yu. I. and Strunin, V. A., Thermal decomposition and combustion of explosives and propellants (Taylor & Francis, London, 2003); doi:10.1201/9781482288261.Google Scholar
Neufeld, Z., “Excitable media in a chaotic flow”, Phys. Rev. Lett. 87 (2001) 108301; doi:10.1103/PhysRevLett.87.108301.Google Scholar
Neufeld, Z., Haynes, P. H., Garcon, V. and Sudre, J., “Ocean fertilization experiments may initiate large scale phytoplankton bloom”, Geophys. Res. Lett. 29 (2002) 15341537; doi:10.1029/2001GL013677.Google Scholar
PDE Solutions Inc., FlexPDE, 2014; http://www.pdesolutions.com.Google Scholar
Ranz, W. E., “Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows”, AIChE J. 25 (1979) 4147; doi:10.1002/aic.690250105.Google Scholar
Schiesser, W. E., The numerical method of lines: integration of partial differential equations (Academic Press, San Diego, CA, 1991).Google Scholar
Sharples, J. J., Sidhu, H. S., McIntosh, A. C., Brindley, J. and Gubernov, V. V., “Analysis of combustion waves arising in the presence of a competitive endothermic reaction”, IMA J. Appl. Math. 77 (2012) 1831; doi:10.1093/imamat/hxr072.Google Scholar
Sinditskii, V. P., Egorshev, V. Y., Levshenkov, A. I. and Serushkin, V. V., “Ammonium nitrate: combustion mechanism and the role of additives”, Propellants Explosives Pyrotech. 30 (2005) 269280; doi:10.1002/prep.200500017.Google Scholar
Tel, T., de Moura, A., Grebogi, C. and Karolyi, G., “Chemical and biological activity in open flows: a dynamical systems approach”, Phys. Rep. 413 (2005) 91196; doi:10.1016/j.physrep.2005.01.005.Google Scholar
Turcotte, R., Goldthorpe, S., Badeem, C. M., Feng, H. and Chan, S. K., “Influence of physical characteristics and ingredients on the minimum burning pressure of ammonium nitrate emulsions”, Propellants Explosives Pyrotech. 35 (2010) 233239; doi:10.1002/prep.201000019.Google Scholar
Zeldovich, Y. B., Barenblatt, G. I., Librovich, V. B. and Makhviladze, G. M., The mathematical theory of combustion and explosions (Consultants Bureau, New York, 1985); doi:10.1007/978-1-4613-2349-5.Google Scholar