Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T13:12:58.171Z Has data issue: false hasContentIssue false

ON THE WELL-POSEDNESS OF A NONLINEAR HIERARCHICAL SIZE-STRUCTURED POPULATION MODEL

Published online by Cambridge University Press:  06 March 2017

YAN LIU*
Affiliation:
Department of Mathematics, China JiLiang University, China email [email protected]
ZE-RONG HE
Affiliation:
Institute of Operational Research and Cybernetics, Hangzhou Dianzi University, China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyse a nonlinear hierarchical size-structured population model with time-dependent individual vital rates. The existence and uniqueness of nonnegative solutions to the model are shown via a comparison principle. Our investigation extends some results in the literature.

Type
Research Article
Copyright
© 2017 Australian Mathematical Society 

References

Ackleh, A. S. and Chellamuthu, V. K., “Finite difference approximations for measure-valued solutions of a hierarchical size-structured population model”, Math. Biosci. Eng. 12 (2015) 233258; doi:10.3934/mbe.2015.12.233.Google Scholar
Ackleh, A. S. and Deng, K., “Monotone approximation for a hierarchical age-structured population model”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 12 (2005) 203214; doi:10.1080/17513750701605564.Google Scholar
Ackleh, A. S. and Ito, K., “A quasilinear hierarchical size-structured model: well-posedness and approximation”, Appl. Math. Optim. 51 (2005) 3559; doi:10.1007/s00245-004-0806-2.Google Scholar
Aniţa, S., Analysis and control of age-dependent population dynamics (Kluwer, Dordrecht, 2000).Google Scholar
Calsina, A. and Saldana, J., “Asymptotic behaviour of a model of hierarchically structured population dynamics”, J. Math. Biol. 35 (1997) 967987; doi:10.1007/s002850050085.Google Scholar
Cushing, J. M., “The dynamics of hierarchical age-structured populations”, J. Math. Biol. 32 (1994) 705729; doi:10.1007/BF00163023.Google Scholar
Gurney, W. S. C. and Nisbet, R. M., “Ecological stability and social hierarchy”, Theor. Popul. Biol. 16 (1979) 4880; doi:10.1016/0040-5809(79)90006-6.Google Scholar
Gurtin, M. E. and MacCamy, R. C., “Non-linear age-dependent population dynamics”, Arch. Ration. Mech. Anal. 54 (1974) 281300; http://www.math.kit.edu/ianm3/lehre/semmathmodelle2010w/media/age-dep-pop-models1974.pdf.Google Scholar
Iannelli, M., Mathematical theory of age-structured population dynamics, Volume 7 of Applied Mathematics Monographs (Giardini, Pisa, 1995).Google Scholar
Kraev, E. A., “Existence and uniqueness for height structured hierarchical population models”, Nat. Resour. Model. 14 (2001) 4570; doi:10.1111/j.1939-7445.2001.tb00050.x.Google Scholar
Lomnicki, A., Population ecology of individuals, Volume 25 of Monographs in Population Biology (Princeton University Press, Princeton, NJ, 1988).Google Scholar
McKendrick, A. G., “Applications of mathematics to medical problems”, Proc. Edinb. Math. Soc. (2) 44 (1925) 98130; doi:10.1017/S0013091500034428.Google Scholar
Metz, J. A. J. and Diekmann, O., The dynamics of physiologically structured populations (Springer, Berlin, 1986).Google Scholar
Sharpe, F. R. and Lotka, A. J., “A problem in age distribution”, Philos. Mag. Ser. 6 21 (1911) 435438; doi:10.1080/14786440408637050.Google Scholar
Sinko, J. W. and Streifer, W., “A new model for age-size structure of a population”, Ecology 48 (1967) 910918; doi:10.2307/1934533.Google Scholar