No CrossRef data available.
Article contents
A NOTE ON THE AXISYMMETRIC DIFFUSION EQUATION
Part of:
Representations of solutions
Miscellaneous topics - Partial differential equations
Partial differential equations
Published online by Cambridge University Press: 21 July 2021
Abstract
We consider the explicit solution to the axisymmetric diffusion equation. We recast the solution in the form of a Mellin inversion formula, and outline a method to compute a formula for $u(r,t)$ as a series using the Cauchy residue theorem. As a consequence, we are able to represent the solution to the axisymmetric diffusion equation as a rapidly converging series.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © Australian Mathematical Society 2021
References
Abramowitz, M. and Stegun, I. A. (eds), “Confluent hypergeometric functions”, in: Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing (Dover, New York, 1972) Chapter 13, 503–515.Google Scholar
Boyadjiev, L. and Luchko, Yu., “Mellin integral transform approach to analyze the multidimensional diffusion-wave equations”, Chaos Solitons Fractals 102 (2017) 127–134; doi:10.1016/j.chaos.2017.03.050.CrossRefGoogle Scholar
Debnath, L., Nonlinear partial differential equations for scientists and engineers (Birkhauser, Boston, MA, 1997); doi:10.1007/978-0-8176-8265-1.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Tables of integrals, series, and products, 7th edn (eds Jeffrey, A. and Zwillinger, D.), (Academic Press, New York, 2007); ISBN: 9780123736376.Google Scholar
Olver, F. W. J., Asymptotics and special functions (Academic Press, New York, 1974); doi:10.1016/C2013-0-11255-X.Google Scholar
Paris, R. B. and Kaminski, D., Asymptotics and Mellin–Barnes integrals (Cambridge University Press, Cambridge, 2001); doi:10.1017/CBO9780511546662.CrossRefGoogle Scholar
Szegö, G., Orthogonal polynomials, Volume 23 of Colloq. Publ. (American Mathematical Society, Providence, RI, 1939); doi:10.1090/coll/023.Google Scholar
Titchmarsh, E. C., Introduction to the theory of Fourier integrals, 2nd edn (Clarendon Press, Oxford, 1959).Google Scholar