Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T11:02:15.190Z Has data issue: false hasContentIssue false

MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE

Published online by Cambridge University Press:  03 May 2011

EMMA G. THOMAS
Affiliation:
National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected])
HANNAH E. BARRINGTON
Affiliation:
National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected]) The University of Western Australia, Perth, Australia
KAMALINI M. LOKUGE
Affiliation:
National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected])
GEOFFRY N. MERCER*
Affiliation:
National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High tuberculosis (TB) prevalence in Papua New Guinea (PNG) is a serious public health concern. The epidemic in this region is exacerbated by the presence of drug-resistant TB strains as well as HIV infection. This presents a public health threat not only locally but also to Australia due to the high potential for cross-border transmission between PNG’s Western Province and the Australian Torres Strait Islands. We present two mathematical models of TB in the Western Province: a simple model of the underlying TB dynamics, and a detailed model which accounts for the additional effects of HIV and drug resistance. The detailed model is used to make quantitative predictions about the impact of expanding the TB case detection rate under the Directly Observed Treatment, Short-course treatment regimen. This paper provides a framework for future investigation into the economic costs and public health benefits of potential TB interventions in this region, with the eventual aim of providing recommendations to guide policy makers in both PNG and Australia.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2011

References

[1]Aparcio, J. P. and Castillo-Chavez, C., “Mathematical modelling of tuberculosis epidemics”, Math. Biosci. Eng. 6 (2009) 209237.Google Scholar
[2] Australian Agency for International Development, “Senate Foreign Affairs, Defence and Trade Committee inquiry into matters relating to the Torres Strait region”, 2009.Google Scholar
[3] Australian Doctors International, “Pre-program assessment for health in Western Province—a report prepared for the PNG Sustainable Development Program Limited”, 2007.Google Scholar
[4] Australian Government Department of Immigration and Citizenship, “Submission to the Senate inquiry into matters relating to the Torres Strait region”, 2009,http://www.aph.gov.au/Senate/committee/fadt_ctte/torresstrait/submissions.htm.Google Scholar
[5]Barrington, H., “Tuberculosis control strategies for the Torres Strait region, with a focus on multi-drug resistant tuberculosis”, Internal Report, National Centre for Epidemiology and Population Health, Australian National University, January 2010.Google Scholar
[6]Basu, S., Andrews, J., Poolman, E., Gandhi, N., Shah, N., Moll, A., Moodley, P., Galvani, A. and Friedland, G., “Prevention of nosocomial transmission of extensively drug-resistant tuberculosis in rural South African district hospitals: an epidemiological modelling study”, Lancet 370 (2007) 15001506.CrossRefGoogle ScholarPubMed
[7]Basu, S. and Galvani, A., “The transmission and control of XDR TB in South Africa: an operations research and mathematical modelling approach”, Epidemiol. Infect. 136 (2008) 15851598.CrossRefGoogle ScholarPubMed
[8]Basu, S., Maru, D., Poolman, E. and Galvani, A., “Primary and secondary tuberculosis preventive treatment in HIV clinics: simulating alternative strategies”, Int. J. Tuberc. Lung Dis. 13 (2009) 652658.Google ScholarPubMed
[9]Blower, S. M. and Dowlatabadi, H., “Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example”, Int. Stat. Rev. 62 (1994) 229243.CrossRefGoogle Scholar
[10]Blower, S. M., McLean, A. R., Porco, T. C., Small, P. M., Hopewell, P. C., Sanchez, M. A. and Moss, A. R., “The intrinsic transmission dynamics of tuberculosis epidemics”, Nat. Med. 1 (1995) 815821.CrossRefGoogle ScholarPubMed
[11]Chang, K. C., Yew, W. W. and Chan, R. C. Y., “Rapid assays for fluoroquinolone resistance in mycobacterium tuberculosis: a systematic review and meta-analysis”, J. Antimicrob. Chemoth. 65 (2010) 15511561.CrossRefGoogle ScholarPubMed
[12]Corbett, E. L., Watt, C. J., Walker, N., Maher, D., Williams, B. G., Raviglione, M. C. and Dye, C., “The growing burden of tuberculosis: global trends and interactions with the HIV epidemic”, Arch. Intern. Med. 163 (2003) 10091021.CrossRefGoogle ScholarPubMed
[13]Coronado, V.et al., “Transmission of multidrug-resistant mycobacterium tuberculosis among persons with Human Immunodeficiency Virus in an urban hospital: epidemiological and restriction fragment length polymorphism analysis”, J. Infect. Dis. 168 (1993) 10521055.CrossRefGoogle Scholar
[14]Currie, C. S. M., Floyd, K., Williams, B. G. and Dye, C., “Cost, affordability and cost-effectiveness of strategies to control tuberculosis in countries with high HIV prevalence”, BMC Public Health 5 (2005) 130.CrossRefGoogle ScholarPubMed
[15]Gilpin, C. M., Simpson, G., Vincent, S., O’Brien, T. P., Knight, T. A., Globan, M., Coulter, C. and Konstantinos, A., “Evidence of primary transmission of multidrug-resistant tuberculosis in the Western Province of Papua New Guinea”, Med. J. Australia 188 (2008) 148152.CrossRefGoogle ScholarPubMed
[16]Hyman, J. M., Li, J. and Stanley, E. A., “The differential infectivity and staged progression models for the transmission of HIV”, Math. Biosci. 155 (1998) 77109.CrossRefGoogle Scholar
[17]Kang, Y., Choi, Y.-J., Cho, Y.-J., Lee, S. M., Yoo, C.-G., Kim, Y. W., Han, S. K., Shim, Y.-S. and Yim, J.-J., “Cost of treatment for multidrug-resistant tuberculosis in South Korea”, Respirology 11(6) (2006) 793798.CrossRefGoogle ScholarPubMed
[18]Lalloo, U. and Ambaram, A., “New antituberculous drugs in development”, Curr. HIV/AIDS Rep. 7 (2010) 143151.CrossRefGoogle ScholarPubMed
[19]Liu, L., Zhao, X. and Zhou, Y., “A tuberculosis model with seasonality”, Bull. Math. Biol. 72 (2010) 931952.Google ScholarPubMed
[20]Migliori, G. B.et al., “Clinical and operational value of the extensively drug-resistant tuberculosis definition”, Eur. Respir. J. 30 (2007) 623626.CrossRefGoogle ScholarPubMed
[21]Murray, C. and Salomon, J., “Modeling the impact of global tuberculosis control strategies”, Proc. Natl. Acad. Sci. USA 95 (1998) 1388113886.CrossRefGoogle ScholarPubMed
[22]Nahid, P., Gonzalez, L. C., Rudoy, I., de Jong, B. C., Unger, A., Kawamura, M., Osmond, D. H., Hopewell, P. C. and Daley, C. L., “Treatment outcomes of patients with HIV and tuberculosis”, Am. J. Respir. Crit. Care Med. 175 (2007) 11991206.CrossRefGoogle ScholarPubMed
[23] Papua New Guinea Statistics Office, “Papua New Guinea 2000 Census”, 2000.Google Scholar
[24]Porco, T. C. and Blower, S. M., “Quantifying the intrinsic transmission dynamics of tuberculosis”, Theor. Popul. Biol. 54 (1998) 117132.CrossRefGoogle ScholarPubMed
[25]Porco, T. C., Small, P. M. and Blower, S. M., “Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks”, J. Acq. Immun. Def. Synd. 28 (2001) 437444.CrossRefGoogle ScholarPubMed
[26]Raviglione, M. C., Snider, D. E. and Kochi, A., “Global epidemiology of tuberculosis: morbidity and morality of a worldwide epidemic”, J. Am. Med. Assoc. 273 (1995) 220226.CrossRefGoogle Scholar
[27]Rodrigues, P., Gabriela, M., Gomes, M. and Rebelo, C., “Drug resistance in tuberculosis—a reinfection model”, Theor. Popul. Biol. 71 (2007) 196212.CrossRefGoogle ScholarPubMed
[28]Roeger, L.-I. W., Feng, Z. and Castillo-Chavez, C., “Modeling TB and HIV co-infections”, Math. Biosci. Eng. 6 (2009) 815837.Google ScholarPubMed
[29]Ryan, C. E., Gare, J., Crowe, S. M., Wilson, K., Reeder, J. C. and Oelrichs, R. B., “The heterosexual HIV type 1 epidemic in Papua New Guinea is dominated by subtype C”, AIDS Res. Hum. Retrov. 7 (2007) 941944.CrossRefGoogle Scholar
[30]Sánchez, M., Lloyd-Smith, J., Williams, B., Porco, T., Ryan, S., Borgdorff, M., Mansoer, J., Dye, C. and Getz, W., “Incongruent HIV and tuberculosis co-dynamics in Kenya: interacting epidemics monitor each other”, Epidemics 1 (2009) 1420.CrossRefGoogle ScholarPubMed
[31]Sharomi, O., Podder, C. and Gumel, A., “Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment”, Math. Biosci. Eng. 5 (2008) 145174.Google ScholarPubMed
[32]Shenoi, S., Heysell, S., Moll, A. and Friedland, G., “Multidrug-resistant and extensively drug-resistant tuberculosis: consequences for the global HIV community”, Curr. Opin. Infect. Dis. 22 (2009) 1117.CrossRefGoogle ScholarPubMed
[33]Telzak, E. E., Chirgwin, K. D., Nelson, E. T., Matts, J. P., Sepkowitz, K. A., Benson, C. A., Perlman, D. C. and El-Sadr, W. M., “Predictors for multidrug-resistant tuberculosis among HIV infected patients and response to specific drug regimens”, Int. J. Tuberc. Lung Dis. 3 (1999) 337343.Google ScholarPubMed
[34] UNAIDS: the Joint United Nations Programme on HIV/AIDS, “2008 report on the global AIDS epidemic, Annex I: HIV and AIDS estimates and data 2007 and 2001”, 2008.Google Scholar
[35] United Nations Population Division, “World population prospects: the 2008 revision population database”, 2008.Google Scholar
[36]Vynnycky, E. and Fine, P. E. M., “Lifetime risks, incubation period, and serial interval of tuberculosis”, Am. J. Epidemiol. 152 (2000) 247263.CrossRefGoogle ScholarPubMed
[37]Wells, C., Cegielski, J., Nelson, L., Lserson, K., Holtz, T., Finlay, A. and Castro, K., “HIV infection and multidrug-resistant tuberculosis—the perfect storm”, J. Infect. Dis. 196 (2007) S87S107.CrossRefGoogle ScholarPubMed
[38] World Health Organisation, “World Health Organisation Statistical Information System”.Google Scholar
[39] World Health Organisation, “Tuberculosis control in the WHO Western Pacific Region—2003 report”, 2003.Google Scholar
[40] World Health Organisation, “Papua New Guinea: summary country profile for HIV/AIDS treatment scale-up”, December 2005, http://www.who.int/hiv/HIVCP_PNG.pdf.Google Scholar
[41] World Health Organisation, “Financing M/XDR-TB control and care”, in: Key bottlenecks in M/XDR-TB control and patient care (2009).Google Scholar
[42] World Health Organisation, “Global tuberculosis control—epidemiology, strategy, financing”, Technical Report, World Health Organization, 2009.Google Scholar
[43] World Health Organisation, “TB Country Profile: Papua New Guinea”, 2009.Google Scholar
[44] World Health Organisation, “TB/HIV Facts 2009”, 2009.Google Scholar
[45] World Health Organisation, “Tuberculosis control in the Western Pacific Region”, 2009.Google Scholar
[46] World Health Organisation, “Multidrug-resistant and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response”, 2010.Google Scholar
[47]Yang, Z., Kong, Y., Wilson, F., Foxman, B., Fowler, A. H., Marrs, C. F., Cave, M. D. and Bates, J. H., “Identification of risk factors for extrapulmonary tuberculosis”, Clin. Infect. Dis. 38 (2004) 199205.CrossRefGoogle ScholarPubMed
[48]Zignol, M., Hosseini, M. S., Lambregts-van Weezenbeek, C., Nunn, P., Watt, C. J., Williams, B. G. and Dye, C., “Global incidence of multidrug-resistant tuberculosis”, J. Infect. Dis. 194 (2006) 479485.CrossRefGoogle ScholarPubMed