Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T22:05:52.286Z Has data issue: false hasContentIssue false

MODELLING THE GROWTH OF ZINC OXIDE NANOSTRUCTURES

Published online by Cambridge University Press:  03 November 2009

JADE R. MACKAY*
Affiliation:
MacDiarmid Institute, School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand (email: [email protected])
STEPHEN P. WHITE
Affiliation:
Industrial Research Limited, Lower Hutt, New Zealand (email: [email protected], [email protected])
SHAUN C. HENDY
Affiliation:
MacDiarmid Institute, School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand (email: [email protected]) Industrial Research Limited, Lower Hutt, New Zealand (email: [email protected], [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Zinc oxide is known to produce a wide variety of nanostructures that show promise for a number of applications. The use of electrochemical deposition techniques for growing ZnO nanostructures can allow tight control of the morphology of ZnO through the wide range of deposition parameters available. Here we model the growth of the rods under typical electrochemical conditions, using the Nernst–Planck equations in two dimensions to predict the growth rate and morphology of the nanostructures as a function of time. Generally good quantitative and qualitative agreement is found between the model predictions and recent experimental results.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Arnold, M. S., Avouris, P., Pan, Z. W. and Wang, Z. L., “Field-effect transistors based on single semiconducting oxide nanobelts”, J. Phys. Chem. B 107 (2003) 659663.CrossRefGoogle Scholar
[2]Aylward, G. and Findlay, T., SI chemical data, 3rd edn (Wiley, Brisbane, 1994).Google Scholar
[3]Canava, B. and Lincot, D., “Nucleation effects on structural and optical properties of electrodeposited zinc oxide on tin oxide”, J. Appl. Electrochem. 30 (2000) 711716.CrossRefGoogle Scholar
[4]Gal, D., Hodes, G., Lincot, D. and Schock, H.-W., “Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells”, Thin Solid Films 361 (2000) 7983.CrossRefGoogle Scholar
[5]Goux, A., Pauporte, T. and Lincot, D., “Temperature effects on ZnO electrodeposition”, Electrochim. Acta 50 (2005) 31683172.CrossRefGoogle Scholar
[6]Illy, B., Shollock, B. A., MacManus-Driscoll, J. L. and Ryan, M. P., “Electrochemical growth of ZnO nanoplates”, Nanotechnology 16 (2005) 320324.CrossRefGoogle ScholarPubMed
[7]Ingham, B., Illy, B. N., Mackay, J. R., White, S. P., Hendy, S. C. and Ryan, M. P., “In situ synchrotron X-ray absorption experiments and modelling of the growth rates of electrochemically deposited ZnO nanostructures”, Mater. Res. Soc. Symp. Proc. 1017 (2007) DD12DD16.CrossRefGoogle Scholar
[8]Izaki, M. and Omi, T., “Transparent zinc oxide films prepared by electrochemical reaction”, Appl. Phys. Lett. 68 (1996) 24392440.CrossRefGoogle Scholar
[9]Kadota, M. and Miura, T., “Shear bulk wave transducer made of -plane epitaxial ZnO film on r-sapphire”, Japan J. Appl. Phys. 41 (2002) 32813284.CrossRefGoogle Scholar
[10]Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P. D., “Nanowire dye-sensitized solar cell”, Nature Mater. 4 (2005) 455459.CrossRefGoogle Scholar
[11]Lee, J. and Tak, Y., “Electrodeposition of ZnO on ITO electrode by potential modulation method”, Electrochem. Solid State Lett. 4 (2001) C63C65.CrossRefGoogle Scholar
[12]Lide (ed), D. R., CRC handbook of chemistry and physics, 86th edn (CRC Press, Boca Raton, FL, 2004).Google Scholar
[13]Liu, R. V. A., Bohannan, E., Sorensen, T. and Switzer, J., “Epitaxial electrodeposition of ZnO nanopillars on single-crystal gold”, Chem. Mater. 13 (2001) 508512.CrossRefGoogle Scholar
[14]O’Regan, B., Sklover, V. and Gratzel, M., “Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes”, J. Electrochem. Soc. 148 (2001) C498505.CrossRefGoogle Scholar
[15]Pandy, R. K., Sahu, S. N. and Chandra, S., Handbook of semiconductor electrodeposition, 1st edn (Marcel Dekker Inc., New York, 1996).Google Scholar
[16]Peulon, S. and Lincot, D., “Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films”, Adv. Mater. 8 (1996) 166170.CrossRefGoogle Scholar
[17]White, S. P., Weir, G. J. and Laycock, N. J., “Calculating the chemical concentrations during the initiation of crevice corrosion”, Corros. Sci. 42 (2000) 605629.CrossRefGoogle Scholar
[18]Wong, M. H., Berenov, A., Qi, X., Kappers, M. J., Barber, Z. H., Illy, B., Lockman, Z., Ryan, M. P. and MacManus-Driscoll, J. L., “Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil”, Nanotechnology 14 (2003) 968973.CrossRefGoogle Scholar
[19]Yeager, E., Bockris, J. O’M., Conway, B. E. and Sarangapani (eds), S., Comprehensive treatise of electrochemistry, 1st edn, Volume 6 (Plenum Press, New York, 1983).CrossRefGoogle Scholar