Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T21:09:24.307Z Has data issue: false hasContentIssue false

MODELLING ION, WATER AND ION–WATER CLUSTER ENTERING PEPTIDE NANOTUBES

Published online by Cambridge University Press:  02 September 2015

N. THAMWATTANA*
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, organic nanostructures have attracted much attention, and amongst them peptide nanotubes are of interest in many fields of application including medicine and nanobiotechnology. Peptide nanotubes are formed by self-assembly of cyclic peptides with alternating L- and D-amino acids. Due to their biodegradability, flexible design and easy synthesis, many applications have been proposed such as artificial transmembrane ion channels, templates for nanoparticles, mimicking pore structures, nanoscale testing tubes, biosensors and carriers for targeted drug delivery. The mechanisms of an ion, a water molecule and an ion–water cluster entering into a peptide nanotube of structure cyclo[(-D-Ala-L-Ala-)$_{4}$] are explored here. In particular, the Lennard-Jones potential and a continuum approach are employed to determine three entering mechanisms: (i) through the tube open end, (ii) through a region between each cyclic peptide ring and (iii) around the edge of the tube open end. The results show that while entering the nanotube by method (i) is possible, an ion or a molecule requires initial energy to overcome an energetic barrier to be able to enter the nanotube through positions (ii) and (iii). Due to its simple structure, the D-, L-Ala cyclopeptide nanotube is chosen in this model; however, it can be easily extended to include more complicated nanotubes.

Type
Research Article
Copyright
© 2015 Australian Mathematical Society 

References

Baowan, D. and Hill, J. M., “Force distribution for double-walled carbon nanotubes and gigahertz oscillators”, Z. Angew. Math. Phys. 58 (2007) 857875; doi:10.1007/s00033-006-6098-z.CrossRefGoogle Scholar
Baowan, D., Thamwattana, N. and Hill, J. M., “Encapsulation of $\text{C}_{60}$ fullerenes into single-walled carbon nanotubes: fundamental mechanical principles and conventional applied mathematical modeling”, Phys. Rev. B 76 (2007) 155411; doi:10.1103/PhysRevB.76.155411.CrossRefGoogle Scholar
Cheng, J., Zhu, J., Liu, B., Liao, Z. and Lai, Z., “Structure of a self-assembled single nanotube of cyclo[(-d-Ala-l-Ala)$_{4}$-]”, Mol. Simul. 35 (2009) 625630; doi:10.1080/08927020902787788.CrossRefGoogle Scholar
Colombo, G., Soto, P. and Gazit, E., “Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology”, Trends Biotechnol. 25 (2007) 211218 doi:10.1016/j.tibtech.2007.03.004.CrossRefGoogle ScholarPubMed
Cox, B. J., Thamwattana, N. and Hill, J. M., “Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies”, Proc. R. Soc. A 463 (2007) 461477 doi:10.1098/rspa.2006.1771.CrossRefGoogle Scholar
Dehez, F., Tarek, M. and Chipot, C., “Energetics of ion transport in a peptide nanotube”, J. Phys. Chem. B 111 (2007) 1063310635; doi:10.1021/jp075308s.CrossRefGoogle Scholar
Garcia-Fandiño, R., Castedo, L., Granja, J. R. and Vásquez, S. A., “Interaction and dimerization energies in methyl-blocked ${\it\alpha}$, ${\it\gamma}$-peptide nanotube segments”, J. Phys. Chem. B 114 (2010) 49734983; doi:10.1021/jp910919k.CrossRefGoogle ScholarPubMed
Gazit, E., “Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization”, Chem. Soc. Rev. 36 (2007) 12631269; doi:10.1039/B605536M.CrossRefGoogle ScholarPubMed
Ghadiri, M. R., Granja, J. R. and Buehler, L. K., “Artificial transmembrane ion channels from self-assembling peptide nanotubes”, Nature 369 (1994) 301304; doi:10.1038/369301a0.CrossRefGoogle ScholarPubMed
González, B. S., Hernández-Rojas, J. and Wales, D. J., “Global minima and energetics of $\text{Li}^{+}(\text{H}_{2}\text{O})_{n}$ and $\text{Ca}^{2+}(\text{H}_{2}\text{O})_{n}$ clusters for $n\leq 20$”, Chem. Phys. Lett. 412 (2005) 2328 doi:10.1016/j.cplett.2005.06.090.CrossRefGoogle Scholar
Hartgerink, J. D., Granja, J. R., Milligan, R. A. and Ghadiri, M. R., “Self-assembling peptide nanotubes”, J. Amer. Chem. Soc. 118 (1996) 4350; doi:10.1021/ja953070s.CrossRefGoogle Scholar
Hausman, R. E. and Cooper, G. M., The cell: a molecular approach (ASM Press, Washington, 2004).Google Scholar
Khurana, E., DeVane, R. H., Kohlmeyer, A. and Klein, M. L., “Probing peptide nanotube self-assembly at a liquid–liquid interface with coarse-grained molecular dynamics”, Nano Lett. 8 (2008) 36263630; doi:10.1021/nl801564m.CrossRefGoogle Scholar
Liu, J., Fan, J., Min, T. and Zhou, W., “Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube”, J. Phys. Chem. A 114 (2010) 23762383 doi:10.1021/jp910624z.CrossRefGoogle Scholar
Mathews, C. K., van Holde, K. E. and Ahern, K. G., Biochemistry, 3rd edn (Addison-Wesley, San Francisco, 2000) 2731.Google Scholar
Morgan, E., “A review of amino acids”, Web Biochemistry, School of Biomedical Sciences, Curtin University of Technology; http://wbiomed.curtin.edu.au/biochem/tutorials/AAs/AA.html.Google Scholar
Rahmat, F., Thamwattana, N. and Cox, B. J., “Modelling peptide nanotubes for artificial ion channels”, Nanotechnology 22 (2011) 445707; doi:10.1088/0957-4484/22/44/445707.CrossRefGoogle ScholarPubMed
Reches, M. and Gazit, E., “Molecular self-assembly of peptide nanostructures: mechanism of association and potential uses”, Curr. Nanosci. 2 (2006) 105111 doi:10.2174/157341306776875802.CrossRefGoogle Scholar
Tiangtrong, P., Thamwattana, N. and Baowan, D., “Modelling water molecules inside cyclic peptide nanotubes”, Appl. Nanosci. Online First article, doi:10.1007/s13204-015-0436-4.Google Scholar
Zhang, S., Marini, D. M., Hwang, W. and Stonso, S., “Design of nanostructured biological materials through self-assembly of peptides and proteins”, Curr. Opin. Chem. Biol. 6 (2002) 865871 doi:10.1016/S1367-5931(02)00391-5.CrossRefGoogle ScholarPubMed
Zhu, J., Cheng, J. and Liao, Z., “Investigation of structures and properties of cyclic peptide nanotubes by experiment and molecular dynamics”, J. Comput. Aided Mol. Des. 22 (2008) 773781 doi:10.1007/s10822-008-9212-9.CrossRefGoogle ScholarPubMed