Article contents
Instantaneous point source solutions in nonlinear diffusion with nonlinear loss or gain
Published online by Cambridge University Press: 17 February 2009
Abstract
Exact solutions are developed for instantaneous point sources subject to nonlinear diffusion and loss or gain proportional to nth power of concentration, with n > 1. The solutions for the loss give, at large times, power-law decrease to zero of slug central concentration and logarithmic increase of slug semi-width. Those for gain give concentration decreasing initially, going through a minimum, and then increasing, with blow-up to infinite concentration in finite time. Slug semi-width increases with time to a finite maximum in finite time at a blow-up. Taken in conjunction with previous studies, these new results provide an overall schema for instantaneous nonlinear diffusion point sources with nonlinear loss or gain for the total range n ≥ 0. Six distinct regimes of behaviour of slug semi-width and concentration are identified, depending on the range of n, 0 ≤ n < 1, n = 1, or n > 1. Three of them are for loss, and three for gain. The classical Barenblatt-Pattle nonlinear instantaneous point-source solutions with material concentration occupy a central place in the total schema.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2000
References
- 1
- Cited by