Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:30:36.957Z Has data issue: false hasContentIssue false

HYPER-WIENER INDEX OF ZIGZAG POLYHEX NANOTUBES

Published online by Cambridge University Press:  01 July 2008

MEHDI ELIASI
Affiliation:
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran (email: [email protected])
BIJN TAERI*
Affiliation:
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hyper-Wiener index of a connected graph G is defined as , where V (G) is the set of all vertices of G and d(u,v) is the distance between the vertices u,vV (G). In this paper we find an exact expression for the hyper-Wiener index of TUHC6[2p,q], the zigzag polyhex nanotube.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Ashrafi, A. R. and Loghman, A., “PI index of zig-zag polyhex nanotubes”, MATCH Commun. Math. Comput. Chem. 55 (2006) 447452.Google Scholar
[2]Ashrafi, A. R. and Loghman, A., “PI index of armchair polyhex nanotubes”, Ars Combin. 80 (2006) 193199.Google Scholar
[3]Ashrafi, A. R. and Yousefi, S., “Computing the Wiener index of a TUC 4C 8(S) nanotorus”, MATCH Commun. Math. Comput. Chem. 57 (2007) 403410.Google Scholar
[4]Devillers, J. and Balaban, A., Topological indices and related descriptors in QSAR and QSPR (Gordon and Breach, Amsterdam, 1999).Google Scholar
[5]Diudea, M. V., “Walk numbers eW M: Wiener numbers of higher rank”, J. Chem. Inf. Comput. Sci. 36 (1996) 535540.CrossRefGoogle Scholar
[6]Diudea, M. V., “Wiener and hyper-Wiener numbers in a single matrix”, J. Chem. Inf. Comput. Sci. 36 (1996) 833836.CrossRefGoogle Scholar
[7]Diudea, M. V., “Graphenes from 4-valent tori”, Bull. Chem. Soc. Jpn. 75 (2002) 487492.CrossRefGoogle Scholar
[8]Diudea, M. V., “Hosoya polynomial in tori”, MATCH Commun. Math. Comput. Chem. 45 (2002) 109122.Google Scholar
[9]Diudea, M. V. and Graovac, A., “Generation and graph-theoretical properties of C 4-tori”, MATCH Commun. Math. Comput. Chem. 44 (2001) 93102.Google Scholar
[10]Diudea, M. V. and John, P. E., “Covering polyhedral tori”, MATCH Commun. Math. Comput. Chem. 44 (2001) 103116.Google Scholar
[11]Diudea, M. V., Silaghi-Dumitrescu, I. and Parv, B., “Toranes versus Torenes”, MATCH Commun. Math. Comput. Chem. 44 (2001) 117133.Google Scholar
[12]Diudea, M. V., Stefu, M., Parv, B. and John, P. E., “Wiener index of armchair polyhex nanotubes”, Croat. Chem. Acta 77 (2004) 111115.Google Scholar
[13]Dobrynin, A. A., Entringer, R. and Gutman, I., “Wiener index of trees: theory and applications”, Acta Appl. Math. 66 (2001) 211249.CrossRefGoogle Scholar
[14]Dobrynin, A. A., Gutman, I., Klavžar, S. and Žigert, P., “Wiener index of hexagonal systems”, Acta Appl. Math. 72 (2002) 247294.CrossRefGoogle Scholar
[15]Eliasi, E. and Taeri, B., “Szeged and Balaban indices of zig-zag polyhex nanutubes”, MATCH Commun. Math. Comput. Chem. 56 (2006) 383402.Google Scholar
[16]Eliasi, E. and Taeri, B., “Balaban index of zigzag polyhex nanotorus”, J. Comput. Theor. Nano Sci. 4 (2007) 11741178.CrossRefGoogle Scholar
[17]Eliasi, E. and Taeri, B., “Hyper-Wiener index of zigzag polyhex nanotorus”, Ars Combin. 85 (2007) 307318.Google Scholar
[18]Harary, F., Graph Theory (Addison-Wesley, Reading, MA, 1972).Google Scholar
[19]Heydari, A. and Taeri, B., “Szeged Index of TUC 4C 8(R) nanotubes”, MATCH Commun. Math. Comput. Chem. 57 (2007) 463477.Google Scholar
[20]Heydari, A. and Taeri, B., “Wiener and Schultz Indices of TUC 4C 8(R) nanotubes”, J. Comput. Theor. Nano Sci. 4 (2007) 158167.Google Scholar
[21]Heydari, A. and Taeri, B., “Wiener and Schultz Indices of TUC 4C 8(S) nanotubes”, MATCH Commun. Math. Comput. Chem. 57 (2007) 665676.Google Scholar
[22]Heydari, A. and Taeri, B., “Hyper-Wiener index of TUC 4C 8(S) nanotubes”, J. Comp. Thoer. NanoSci. 5 (2008) 22752279.CrossRefGoogle Scholar
[23]John, P. E. and Diudea, M. V., “Wiener index of zig-zag polyhex nanotubes”, Croat. Chem. Acta 77 (2004) 127132.Google Scholar
[24]Klavžar, S., Žigert, P. and Gutman, I., “An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons”, MATCH Commun. Math. Comput. Chem. 24 (2000) 229233.Google ScholarPubMed
[25]Klein, D. J., Lukovits, I. and Gutman, I., “On the definition of the hyper-Wiener index for cycle-containing structures”, J. Chem. Inf. Comput. Sci. 35 (1995) 5052.CrossRefGoogle Scholar
[26]Randić, M., “Novel molecular descriptor for structure-property studies”, Chem. Phys. Lett. 211 (1993) 478483.CrossRefGoogle Scholar
[27]Wiener, H., “Structural determination of paraffin boiling points”, J. Am. Chem. Soc. 69 (1947) 1720.CrossRefGoogle ScholarPubMed
[28]Wiener, H., “Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons”, J. Am. Chem. Soc. 69 (1947) 26362638.CrossRefGoogle Scholar
[29]Wiener, H., “Influence of interatomic forces on paraffin properties”, J. Chem. Phys. 15 (1947) 766766.CrossRefGoogle Scholar
[30]Wiener, H., “Vapor pressure–temperature relationships among the branched paraffin hydrocarbons”, J. Phys. Chem. 52 (1948) 425430.CrossRefGoogle ScholarPubMed
[31]Wiener, H., “Relation of the physical properties of the isomeric alkanes to molecular structure”, J. Phys. Chem. 52 (1948) 10821089.CrossRefGoogle ScholarPubMed
[32]Wolfram, S., The Mathematica ® book, 5th edn (Wolfram Media, Champaign, IL, 2003).Google Scholar
[33]Yousefi, S. and Ashrafi, A. R., “An exact expression for the Wiener index of a polyhex nanotorus”, MATCH Commun. Math. Comput. Chem. 56 (2006) 169178.Google Scholar
[34]Yousefi, S. and Ashrafi, A. R., “An exact expression for the Wiener index of a TUC 4C 8(R) nanotorus”, J. Math. Chem. 42 (2007) 10311039.CrossRefGoogle Scholar