Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T04:47:30.729Z Has data issue: false hasContentIssue false

Generalized functions for applications

Published online by Cambridge University Press:  17 February 2009

B. D. Craven
Affiliation:
Mathematics Department, University of Melbourne, Parkville, Victoria 3052 and Visiting Scientist at the National Research Institute for Mathematical Sciences of the CSIR, Pretoria, South Africa.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A simple rigorous approach is given to generalized functions, suitable for applications. Here, a generalized function is defined as a genuine function on a superset of the real line, so that multiplication is unrestricted and associative, and various manipulations retain their classical meanings. The superset is simply constructed, and does not require Robinson's nonstandard real line. The generalized functions go beyond the Schwartz distributions, enabling products and square roots of delta functions to be discussed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Hölder, O., “Die Axiome der Quantitä und die Lehre von Menge”, Ber. Verh. Sächs. Akad. Wiss., Lpz. 53 (1901), 169.Google Scholar
[2]Hoskins, R. F., “Infinitesimals, non-standard analysis, and generalized functions”, Bull. Inst. Math. Appl. 18 (1982), 4951.Google Scholar
[3]Lighthill, M. J., Introduction to Fourier analysis and generalized functions (Cambridge Univ. Press, 1958).CrossRefGoogle Scholar
[4]Mikusiński, J., “On the square of the Dirac delta distribution”, Bull. Acad. Polon. Sci. 14 (9) (1966), 511513.Google Scholar
[5]Robinson, A., Nonstandard analysis (North-Holland, 1966).Google Scholar
[6]Rosinger, E. E., Distributions and nonlinear partial differential equations, Lecture Notes in Math. 684 (Springer-Verlarg, 1978).CrossRefGoogle Scholar
[7]Schmieden, C. and Laugwitz, D., “Eine Erweiterung der Infinitesimalrechnung”, Math. Z. 69 (1958), 139.CrossRefGoogle Scholar
[8]Schoenflies, A., “Über die Möglichkeit einer projektiven Geometrie bei transfiniter (ncht archimedischer) Massbestimmung”, Jber. dt. Mathuerein 15 (1906), 2631.Google Scholar
[9]Schwartz, L., Théorie des distributions (Hermann, Paris, 1950 and 1966).Google Scholar
[10]Stroyan, K. D. and Luxemburg, W. A. J., Introduction to the theory of infinilesimals (Academic Press, New York, 1976).Google Scholar
[11]Tall, D., “Looking at graphs through infinitesimal microscopes, windows and telescopes”, Math. Gaz. 64 (1980), 2249.CrossRefGoogle Scholar
[12]Thurber, J. K. and Katz, J., “Applications of fractional powers of delta functions”, in Victoria symposium on nonstandard analysis (Hurd, A. and Loeb, P.), Lecture Notes in Mathematics 369 (Springer-Verlag, Berlin, 1974), 272302.CrossRefGoogle Scholar