Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T00:30:41.670Z Has data issue: false hasContentIssue false

Extrapolation techniques and the collocation method for a class of boundary integral equations

Published online by Cambridge University Press:  17 February 2009

Ricardo Celorrio
Affiliation:
Dep. Matemática Aplicada – E.U.I.T.I.Z., Universidad de Zaragoza – Corona de Aragón, 50009 Zaragoza, Spain; e-mail: [email protected].
Francisco-Javier Sayas
Affiliation:
Dep. Matemática Aplicada – Centro Politécnico Superior, Universidad de Zaragoza – María de Luna, 3, 50015 Zaragoza, Spain; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove the existence of asymptotic expansions of the error of the spline collocation method applied to Fredholm integral equations of the first kind with logarithmic kernels. These expansions justify the use of Richardson extrapolation for the acceleration of convergence of the method. The results are stated and proven for a single equation, corresponding to the parameterization of a boundary integral equation on a smooth closed curve. As a byproduct we obtain the nodal superconvergence of the scheme. These results are then extended to smooth open arcs and to systems of integral equations. Finally we prove that such expansions also exist for the Sloan iteration of the numerical solution.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1] Arnold, D. N. and Wendland, W. L., “The convergence of spline collocation for strongly elliptic equations on curves”, Numer. Math. 47 (1985) 317341.Google Scholar
[2] Celorrio, R., “Métodos de contorao para un problema de flujo estacionario alrededor de un túnel”, Ph. D. Thesis, Universidad de Zaragoza, Spain, 1997.Google Scholar
[3] Celorrio, R. and Sayas, F.-J., “Full collocation methods for some boundary integral equations”, Numer. Algorithms 22 (1999) 327351.Google Scholar
[4] Chen, G. and Zhou, J., Boundary element methods (Academic Press, 1992).Google Scholar
[5] Costabel, M., Cours D.E.A. (Université de Rennes I, France, 1992).Google Scholar
[6] Crouzeix, M. and Sayas, F.-J., “Asymptotic expansions of the error of spline Galerkin boundary element methods”, Numer. Math. 78 (1998) 523547.Google Scholar
[7] de Boor, C., A practical guide to splines (Springer, 1978).Google Scholar
[8] Graham, I. G. and Atkinson, K. E., “On the Sloan iteration applied to integral equations of die first kind”, IMA J. Numer. Anal. 13 (1993) 2941.Google Scholar
[9] Hsiao, G. C., Kopp, P. and Wendland, W. L., “Some applications of a Galerkin-collocation method for boundary integral equations of the first kind”, Math. Meth. Appl. Sci. 6 (1984) 280325.Google Scholar
[10] McLean, W., “Asymptotic error expansions for numerical solutions of integral equations”, IMA J. Numer. Anal 9 (1989) 373384.Google Scholar
[11] Saranen, J., “The convergence of even degree spline collocation solution for potential problems in smooth domains in the plane”, Numer. Math. 53 (1988) 490512.Google Scholar
[12] Saranen, J., “Extrapolation methods for spline collocation solution of pseudodifferential equations on curves”, Numer. Math. 56 (1989) 385407.Google Scholar
[13] Sayas, F.-J., “The numerical solution of Symm's integral equation on smooth open arcs by spline Galerkin methods”, Comp. Math. Appl. 38 (1999) 8799.Google Scholar
[14] Sayas, F.-J., “Asymptotic expansion of the error of some boundary element methods”, Ph. D. Thesis, Universidad de Zaragoza, Spain, 1994.Google Scholar
[15] Sayas, F.-J., “Fully discrete Galerkin methods for systems of boundary integral equations”, J. Comp. Appl. Math. 81 (1997) 311331.Google Scholar
[16] Shu, H.-Z., “Approximation d'un problème d'électromagnetisme avec effet de peau”. Ph. D. Thesis, University de Rennes I, France, 1992.Google Scholar
[17] Sloan, I. H. and Spence, A., “The Galerkin method for integral equations of the first kind with logarithmic kernel: theory and applications”, IMA J. Numer. Anal. 8 (1988) 105140.Google Scholar
[18] Stoer, J. and Bulirsch, R., Introduction to numerical analysis (Springer, 1972).Google Scholar
[19] Yan, Y., “Cosine change of variable for Symm's integral equations on open arcs”, IMA J. Numer. Anal. 10(1990)521535.Google Scholar
[20] Yan, Y. and Sloan, I. H., “On integral equations of the first kind with logarithmic kernels”, J. Int. Eqns Appl. 1 (1988) 549579.Google Scholar