Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T08:34:26.141Z Has data issue: false hasContentIssue false

EXPLICIT SERIES SOLUTION OF A CLOSURE MODEL FOR THE VON KÁRMÁN–HOWARTH EQUATION

Published online by Cambridge University Press:  05 September 2011

ZENG LIU
Affiliation:
State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China (email: [email protected], [email protected])
MARTIN OBERLACK
Affiliation:
Chair of Fluid Dynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Petersenstr. 30, 64287 Darmstadt, Germany Center of Smart Interfaces, TU Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany GS Computational Engineering, TU Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany (email: [email protected])
VLADIMIR N. GREBENEV
Affiliation:
Institute of Computational Technologies, Russian Academy of Science, Lavrentiev Ave. 6, Novosibirsk 630090, Russia (email: [email protected])
SHI-JUN LIAO*
Affiliation:
State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China (email: [email protected], [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The homotopy analysis method (HAM) is applied to a nonlinear ordinary differential equation (ODE) emerging from a closure model of the von Kármán–Howarth equation which models the decay of isotropic turbulence. In the infinite Reynolds number limit, the von Kármán–Howarth equation admits a symmetry reduction leading to the aforementioned one-parameter ODE. Though the latter equation is not fully integrable, it can be integrated once for two particular parameter values and, for one of these values, the relevant boundary conditions can also be satisfied. The key result of this paper is that for the generic case, HAM is employed such that solutions for arbitrary parameter values are derived. We obtain explicit analytical solutions by recursive formulas with constant coefficients, using some transformations of variables in order to express the solutions in polynomial form. We also prove that the Loitsyansky invariant is a conservation law for the asymptotic form of the original equation.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2011

References

[1]Birkhoff, G., “Fourier synthesis of homogeneous turbulence”, Comm. Pure Appl. Math. 7 (1954) 1944, doi:10.1002/cpa.3160070104.CrossRefGoogle Scholar
[2]Cheviakov, A. F., “GeM: a Maple module for symmetry and conservation law computation for PDEs/ODEs”, http://math.usask.ca/∼cheviakov/gem/.Google Scholar
[3]Ebin, D. G. and Marsden, J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. of Math. Ser. 2 92 (1970) 102163, doi:10.2307/1970699.CrossRefGoogle Scholar
[4]Erdélyi, A. (ed.) Higher transcendental functions, Volume I (Bateman Manuscript Project) (McGraw-Hill, New York, 1953).Google Scholar
[5]Grebenev, V. N. and Oberlack, M., “A Chorin-type formula for solutions to a closure model for the von Kármán–Howarth equation”, J. Nonlinear Math. Phys. 12 (2005) 19, doi:10.2991/jnmp.2005.12.1.1.CrossRefGoogle Scholar
[6]Grebenev, V. N. and Oberlack, M., “A geometric interpretation of the second-order structure function arising in turbulence”, Math. Phys. Anal. Geom. 12 (2008) 118, doi:10.1007/s11040-008-9049-4.CrossRefGoogle Scholar
[7]Hurst, D. and Vassilicos, J. C., “Scalings and decay of fractal-generated turbulence”, Phys. Fluids 19 (2007) 035103, doi:10.1063/1.2676448.CrossRefGoogle Scholar
[8]Ibragimov, N. H., A practical course in differential equations and mathematical modelling (ALGA Publications, Karlskrona, Sweden, 2005).Google Scholar
[9]von Kármán, T. and Howarth, L., “On the statistical theory of isotropic turbulence”, Proc. R. Soc. Lond. A 164 (1938) 192215, doi:10.1098/rspa.1938.0013.Google Scholar
[10]Liao, S. J., “An explicit analytic solution to the Thomas–Fermi equation”, Appl. Math. Comput. 144 (2003) 495506, doi:10.1016/S0096-3003(02)00423-X.Google Scholar
[11]Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method (Chapman & Hall/CRC, Boca Raton, FL, 2004).Google Scholar
[12]Liao, S. J., “Notes on the homotopy analysis method: some definitions and theorems”, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 983997, doi:10.1016/j.cnsns.2008.04.013.CrossRefGoogle Scholar
[13]Liao, S. J., “On the relationship between the homotopy analysis method and Euler transform”, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 14211431, doi:10.1016/j.cnsns.2009.06.008.CrossRefGoogle Scholar
[14]Liao, S. J., “An optimal homotopy-analysis approach for strongly nonlinear differential equations”, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 20032016, doi:10.1016/j.cnsns.2009.09.002.CrossRefGoogle Scholar
[15]Liao, S. J. and Cheung, K. F., “Homotopy analysis of nonlinear progressive waves in deep water”, J. Engrg. Math. 45 (2003) 105116, doi:10.1023/A:1022189509293.CrossRefGoogle Scholar
[16]Loitsyansky, L. G., “Some basic laws of isotropic turbulent flow”, Report no. 440, Central Aero-Hydrodynamical Institute, Moscow, 1939.Google Scholar
[17]Marsden, J., Applications of global analysis in mathematical physics (Publish or Perish, Inc., Berkeley, CA, 1974).Google Scholar
[18]Michenko, A. S. and Fomenko, A. T., Lectures on differential geometry and topology (Factorial Press, Moscow, 2000).Google Scholar
[19]Monin, A. S. and Yaglom, A. M., Statistical hydromechanics (Gidrometeoizdat, St. Petersburg, 1994).Google Scholar
[20]Oberlack, M., “On the decay exponent of isotropic turbulence”, Proc. Appl. Math. Mech. (PAMM) 1 (2002) 294297, doi:10.1002/1617-7061(200203)1:1%3C294::AID-PAMM294%3F3.0.CO;2-W.3.0.CO;2-W>CrossRefGoogle Scholar
[21]Oberlack, M. and Peters, N., “Closure of the two-point correlation equation as a basis for Reynolds stress models”, Appl. Sci. Res. 51 (1993) 533538, doi:10.1007/BF01082587.CrossRefGoogle Scholar
[22]Oberlack, M. and Peters, N., “Closure of the two-point correlation equation in physical space as a basis for Reynolds stress models”, in: Near-wall turbulent flows (eds So, R. M. C., Speziale, C. G. and Launder, B. E.), (Elsevier Science, Amsterdam, 1993) 8594.Google Scholar
[23]Oberlack, M. and Rosteck, A., “New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws”, Discrete Contin. Dyn. Syst. Ser. S 3 (2010) 451471, doi:10.3934/dcdss.2010.3.451.Google Scholar
[24]Piquet, J., Turbulent flows: models and physics (Springer, Berlin, 2010).Google Scholar
[25]Roman-Miller, L. and Broadbridge, P., “Exact integration of reduced Fisher’s equation, reduced Blasius equation, and the Lorenz model”, J. Math. Anal. Appl. 251 (2000) 6583, doi:10.1006/jmaa.2000.7020.CrossRefGoogle Scholar
[26]Rosteck, A. and Oberlack, M., “Lie algebra of the symmetries of the multi-point equations in statistical turbulence theory”, J. Nonlinear Math. Phys. 18 (2011) 251264, (Supplementary Issue 1), doi:10.1142/S1402925111001404.CrossRefGoogle Scholar
[27]Seoud, R. E. and Vassilicos, J. C., “Dissipation and decay of fractal-generated turbulence”, Phys. Fluids 19 (2007) 105108, doi:10.1063/1.2795211.CrossRefGoogle Scholar
[28]Stewart, R. W. and Townsend, A. A., “Similarity and self-preservation in isotropic turbulence”, Philos. Trans. R. Soc. Lond. A 243 (1951) 359386, doi:10.1098/rsta.1951.0007.Google Scholar