Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T07:49:59.550Z Has data issue: false hasContentIssue false

Expansion formulae for general triple hypergeometric series

Published online by Cambridge University Press:  17 February 2009

M. I. Qureshi
Affiliation:
Department of Mathematics, Aligarh Muslim University, Aligarh-202001, India.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main object of present paper is to obtain a finite summation of Srivastava's general triple hypergeometric series in terms of Kampé de Fériet's double hypergeometric series. A number of finite sums of Kampé de Fériet's double hypergeometric polynomials in terms of different kinds of single hypergeometric polynomials of higher order, are obtained. Some known results of Manocha and Sharma [9], [10], Munot [11], Pathan [12], Qureshi [15], Qureshi and Pathan [16] and Srivastava [26] are deduced as special cases. A result of Pathan [13, page 316 (1.2)] is also corrected here.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Appell, P. et de Fériet, J. Kampé, Fonctions hypergéométriques et hypersphériques: Polynômes d'Hermite (Gauthier-Villars et cie., Paris, 1926).Google Scholar
[2]Burchnall, J. L. and Chaundy, T. W., “Expansions of Appell's double hypergeometric functions. II,” Quart. J. Math. Oxford Ser. 12 (1974), 112128.Google Scholar
[3]Chhabra, S. P. and Rusia, K. C., “A transformation formula for a general hypergeometnc function of three variables,” Jñānabha 9/10 (1980), 155159.Google Scholar
[4]Deshpande, V. L., “Certain formulas associated with hypergeometric function of three variables,” Pure Appl. Math. Sci. 14 (1981), 3945.Google Scholar
[5]Erdélyi, A., Higher transcendental functions. 1, (McGraw-Hill, New York, 1953).Google Scholar
[6]Krall, H. L. and Frink, O., “A new class of orthogonal polynomials: the Bessel polynomials,” Trans. Amer. Math. Soc. 65 (1949), 100115.Google Scholar
[7]Lauricella, G., “Sulle funzioni ipergeometriche a piu variabili,” Rend. Circ. Mat. Palermo 7 (1893), 111158.CrossRefGoogle Scholar
[8]Luke, Y. L., The special functions and their approximations. 1, (Academic Press, New York and London, 1969).Google Scholar
[9]Manocha, H. L. and Sharma, B. L., “Summation of infinite series,” J. Austral. Math. Soc. 6 (1966), 470476.CrossRefGoogle Scholar
[10]Manocha, H. L. and Sharma, B. L., “Some formulae by means of fractional derivatives,” Compositio Math. 18 (3), (1967), 229234.Google Scholar
[11]Munot, P. C., “On Jacobi polynomials,” Proc. Cambridge Philos. Soc. 65 (1969), 691695.Google Scholar
[12]Pathan, M. A., “On a general triple hypergeometric series,” Proc. Nat. Acad. Sci. India 47 (A) 1 (1977), 5860.Google Scholar
[13]Pathan, M. A., “Certain formulas involving F (3)(x, y, z),” Acta Cienc. Indica Math. 4 (3) (1978), 316318.Google Scholar
[14]Pathan, M. A., “On some transformations of triple hypergeometric series F (3), Indian J. Pure Appl. Math. 9 (4) (1978), 371376.Google Scholar
[15]Qureshi, M. I., On the study of multiple hypergeometric functions of higher order, Ph.D. thesis, Aligarh Muslim University, Aligarh, India, 1983.Google Scholar
[16]Qureshi, M. I. and Pathan, M. A., “A note on hypergeometric polynomials,” J. Austral. Math. Soc. Ser. B 26 (1984), 176182.CrossRefGoogle Scholar
[17]Rainville, E. D., “The contiguous function relations for pFq with applications to Bateman's Jn(u, v) and Rice's Hn(ζ, p, v),” Bull. Amer. Math. Soc. 51 (1945), 714723.CrossRefGoogle Scholar
[18]Rainville, E. D., Specialfunctions (Macmillan, New York, 1960).Google Scholar
[19]Rice, S. O., “Some properties of 3F2[n, n + 1, ζ; 1, p; v],” Duke Math. J. 6 (1940), 108119.Google Scholar
[20]Sharma, B. L., “Some formula for Appell functions,” Proc. Cambridge Philos. Soc. 67 (1970), 613618.CrossRefGoogle Scholar
[21]Shively, R. L., On pseudo Laguerre polynomials, Ph.D. dissertation, University of Michigan, 1953.Google Scholar
[22]Srivastava, H. M., “Hypergeometric functions of three variables,” Ganita 15 (2) (1964), 97108.Google Scholar
[23]Srivastava, H. M., “Some integrals representing triple hypergeometric functions,” Rend. Circ. Mat. Palermo (2) 16 (1–3) (1967), 99115.CrossRefGoogle Scholar
[24]Srivastava, H. M., “Generalized Neumann expansions involving hypergeometric functions,” Proc. Cambridge Philos. Soc. 63 (1967), 425429.CrossRefGoogle Scholar
[25]Srivastava, H. M., “Some integrals representing triple hypergeometric functions,” Math. Japon. 13 (1) (1968), 5569.Google Scholar
[26]Srivastava, H. M., “Certain formulas involving Appell functions,” Comment. Math. Univ. St. Pauli 21 (1) (1972), 7399.Google Scholar
[27]Srivastava, H. M., “Certain formulas associated with generalized Rice polynomials-II,” Ann. Polon. Math. 27 (1972), 7383.Google Scholar