Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:20:03.662Z Has data issue: false hasContentIssue false

EXACT SOLUTIONS FOR INTERFACIAL OUTFLOWS WITH STRAINING

Published online by Cambridge University Press:  05 June 2014

LAWRENCE K. FORBES*
Affiliation:
School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania, Australia email [email protected], [email protected]
MICHAEL A. BRIDESON
Affiliation:
School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania, Australia email [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In models of fluid outflows from point or line sources, an interface is present, and it is forced outwards as time progresses. Although various types of fluid instabilities are possible at the interface, it is nevertheless of interest to know the development of its overall shape with time. If the fluids on either side are of nearly equal densities, it is possible to derive a single nonlinear partial differential equation that describes the interfacial shape with time. Although nonlinear, this equation admits a simple transformation that renders it linear, so that closed-form solutions are possible. Two such solutions are illustrated; for a line source in a planar straining flow and a point source in an axisymmetric background flow. Possible applications in astrophysics are discussed.

MSC classification

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Society 

References

Abramowitz, M. and Stegun, I. A. (eds), Handbook of mathematical functions (Dover, New York, 1972).Google Scholar
Bally, J., O’Dell, C. R. and McCaughrean, M. J., “Disks, microjets, windblown bubbles, and outflows in the Orion nebula”, Astronom. J. 119 (2000) 29192959; doi:10.1086/301385.Google Scholar
Chené, A. N. and St-Louis, N., “Large-scale periodic variability of the wind of the Wolf–Rayet star WR 1 (HD 4004)”, Astrophys. J. 716 (2010) 929941; doi:10.1088/0004-637X/716/2/929.CrossRefGoogle Scholar
Crowdy, D. G., “Exact solutions to the unsteady two-phase Hele–Shaw problem”, Quart. J. Mech. Appl. Math. 59 (2006) 475485; doi:10.1093/qjmam/hbl012.CrossRefGoogle Scholar
de Mestre, N., The mathematics of projectiles in sport, Volume 6 of Australian Mathematical Society Lecture Series (Cambridge University Press, Cambridge, 1990).Google Scholar
Epstein, R., “On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability”, Phys. Plasmas 11 (2004) 51145124; doi:10.1063/1.1790496.Google Scholar
Forbes, L. K., “A cylindrical Rayleigh–Taylor instability: radial outflow from pipes or stars”, J. Engrg. Math. 70 (2011) 205224; doi:10.1007/s10665-010-9374-z.Google Scholar
Forbes, L. K., “Rayleigh–Taylor instabilities in axi-symmetric outflow from a point source”, ANZIAM J. 53 (2011) 87121; doi:10.1017/S1446181112000090.CrossRefGoogle Scholar
Giordano, F. R. and Weir, M. D., Differential equations: a modeling approach (Addison-Wesley, Reading, MA, 1988).Google Scholar
Haberman, R., Mathematical models: mechanical vibrations, population dynamics and traffic flow (Prentice-Hall, Englewood Cliffs, NJ, 1977).Google Scholar
Kida, S., “Motion of an elliptic vortex in a uniform shear flow”, J. Phys. Soc. Japan 50 (1981) 35173520; doi:10.1143/JPSJ.50.3517.Google Scholar
Lebedev, S. V., Ampleford, D., Ciardi, A., Bland, S. N., Chittenden, J. P., Haines, M. G., Frank, A., Blackman, E. G. and Cunningham, A., “Jet deflection via crosswinds: laboratory astrophysical studies”, Astrophys. J. 616 (2004) 988997; doi:10.1086/423730.Google Scholar
Lovelace, R. V. E., Romanova, M. M., Ustyugova, G. V. and Koldoba, A. V., “One-sided outflows/jets from rotating stars with complex magnetic fields”, Mon. Not. R. Astron. Soc. 408 (2010) 20832091; doi:10.1111/j.1365-2966.2010.17284.x.CrossRefGoogle Scholar
Mac Low, M. M. and McCray, R., “Superbubbles in disk galaxies”, Astrophys. J. 324 (1988) 776785; doi:10.1086/165936.CrossRefGoogle Scholar
Mikaelian, K. O., “Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells”, Phys. Fluids 17 (2005) 094105; doi:10.1063/1.2046712.Google Scholar
Perucho, M. and Bosch-Ramon, V., “On the interaction of microquasar jets with stellar winds”, Astron. Astrophys. 482 (2008) 917927; doi:10.1051/0004-6361:20078929.Google Scholar
Raga, A. C., Cantó, J., Rodríguez-González, A. and Esquivel, A., “Curved Herbig–Haro jets immersed in a stellar wind”, Astron. Astrophys. 493 (2009) 115118 ;doi:10.1051/0004-6361:200810900.CrossRefGoogle Scholar
Stahler, S. W. and Palla, F., The formation of stars (Wiley, Berlin, 2004).CrossRefGoogle Scholar