Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T08:36:43.848Z Has data issue: false hasContentIssue false

EFFECTS OF TIME DELAY ON THE DYNAMICS OF A KINETIC MODEL OF A MICROBIAL FERMENTATION PROCESS

Published online by Cambridge University Press:  10 September 2014

KASBAWATI
Affiliation:
Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia email [email protected] email [email protected] Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar, Indonesia email [email protected]
A. Y. GUNAWAN*
Affiliation:
Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia email [email protected] email [email protected]
R. HERTADI
Affiliation:
Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia email [email protected]
K. A. SIDARTO
Affiliation:
Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia email [email protected] email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine the dynamics of fermentation process in a yeast cell. Our investigation focuses on the main branch pathway: pyruvate and acetaldehyde branch points. We formulate the kinetics for all enzymatic reactions as Michaelis–Menten models. Since the activity of an enzyme mainly depends on the conformational changes of the enzyme structure, the enzyme requires a certain period of time to reset its structure, until it is ready to bind substrates again. For this situation, a rate-limiting step exists, for which the catalytic process suffers a delay. Since all conversion processes are catalysed by enzymes, each reaction can experience a delay at a different time. To investigate how the delay affects the reaction processes, especially at the branch points, we propose that the rate-limiting step takes place at the first reaction. For this reason, a discrete time delay is introduced to the first kinetic model. We find a bifurcation diagram for the delay that depends on the rate of glucose supply and kinetic parameters of the first enzyme. By comparison, our analysis agrees with the numerical solution. Our numerical simulations also show that there is a certain glucose supply that may optimize ethanol production.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Society 

References

Agmon, N., “Conformational cycle of a single working enzyme”, J. Phys. Chem. B 104 (2000) 78307834; doi:10.1021/jp0012911.CrossRefGoogle Scholar
Astudillo, I. C. P. and Alzate, C. A. C., “Review: Importance of stability study of continuous systems for ethanol production”, J. Biotechnol. 151 (2011) 4355; http://dx.doi.org/10.1016/j.jbiotec.2010.10.073.CrossRefGoogle Scholar
Benkovic, S. and Hammes-Schiffer, S., “A perspective on enzyme catalysis”, Science 301 (2003) 11961202; http://www.ncbi.nlm.nih.gov/pubmed/12947189.CrossRefGoogle ScholarPubMed
Bennett, W. and Steitz, T., “Glucose-induced conformational change in yeast hexokinase”, Proc. Natl. Acad. Sci. USA 75 (1978) 48484852; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC336218/.CrossRefGoogle ScholarPubMed
Birol, G., Doruker, P., Kardar, B., Onsan, Z. I. and Ulgen, K., “Mathematical description of ethanol fermentation by immobilised Saccaromyces cerevisiae”, Process. Biochem. 7 (1998) 763771; http://dx.doi.org/10.1016/S0032-9592(98)00047-8.CrossRefGoogle Scholar
Briggs, G. E. and Haldane, J. B., “A note on the kinetics of enzyme action”, Biochem. J. 19 (1925) 338339; http://www.biochemj.org/bj/019/0338/0190338.pdf.CrossRefGoogle ScholarPubMed
Christophe, H. S., Jeremy, S. E., David, L. and Bernhard, O. P., “Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems”, Biotechnol. Bioengng 71 (2001) 286306; doi: 10.1002/1097-0290(2000)71:43.3.CO;2-I.Google Scholar
Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffery, D. J. and Knuth, D. E., “On the Lambert $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$ function”, Adv. Comput. Math. 5 (1996) 329359; doi:10.1007/BF02124750.CrossRefGoogle Scholar
Eisenmesser, E., Bosco, D., Akke, M. and Kern, D., “Enzyme dynamics during catalysis”, Science 295 (2002) 15201523; doi:10.1126/science.1066176.CrossRefGoogle ScholarPubMed
Hale, J. K., Theory of functional differential equations (Springer, New York, 1977).CrossRefGoogle Scholar
Heinrich, R. and Holzhütter, H. G., “Efficiency and design of simple metabolic systems”, Biomed. Biochim. Acta 44 (1985) 959969; doi:10.1007/BF02460137.Google ScholarPubMed
Heinrich, R., Holzhütter, H. and Schuster, S., “A theoretical approach to the evolution and structural design of enzymatic networks. Linear enzymatic chains, branched pathways and glycolysis of erythrocytes”, Bull. Math. Biol. 49 (1987) 539595; doi:10.1016/S0092-8240(87)90003-6.CrossRefGoogle Scholar
Heinrich, R., Rapoport, S. M. and Rapoport, T. A., “Metabolic regulation and mathematical models”, Prog. Biophys. Mol. Biol. 32 (1977) 182; http://cmt.hkbu.edu.hk/colloquium/heinrich.pdf.CrossRefGoogle ScholarPubMed
Heinrich, R. and Schuster, S., The regulation of cellular systems (Chapman & Hall, New York, 1996).CrossRefGoogle Scholar
Heinrich, R. and Schuster, S., “The modelling of metabolic systems. Structure, control and optimality”, BioSystems 47 (1998) 6177; doi:10.1016/S0303-2647(98)00013-6.CrossRefGoogle ScholarPubMed
Herschlag, D., “The role of induced fit and conformational changes of enzymes in specificity and catalysis”, Biorg. Chem. 16 (1988) 6296; doi:10.1016/0045-2068(88)90038-7.CrossRefGoogle Scholar
Hinch, R. and Schnell, S., “Mechanism equivalence in enzymesubstrate reactions: distributed differential delay in enzyme kinetics”, J. Math. Chem. 35 (2004) 253264; doi: 10.1023/B:JOMC.0000033258.42803.60.CrossRefGoogle Scholar
Klipp, E., Herwig, R., Kowald, A., Wierling, C. and Lehrach, H., Systems biology in practice (Wiley-VCH Verlag, Weinheim, 2005).CrossRefGoogle Scholar
Lei, F., Rotboll, M. and Jorgensen, S. B., “A biochemically structured model for Saccaromyces cerevisiae”, J. Biotechnol. 88 (2001) 205221; doi:10.1016/S0168-1656(01)00269-3.CrossRefGoogle Scholar
Meyer, C. D., Matrix analysis and applied linear algebra (SIAM, Philadelphia, 2000).CrossRefGoogle Scholar
Murray, J. D., Mathematical biology, 2nd edn (Springer, New York, 1990).Google Scholar
Nelson, D. L. and Cox, M. M., Lehninger: principles of biochemistry, 4th edn (WH Freeman, Madison, WI, 2005).Google Scholar
Postma, E., Verduyn, C., Scheffers, W. A. and van-Dijken, J. P., “Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae”, Appl. Environ. Microbiol. 55 (1989) 468477; http://aem.asm.org/content/55/2/468.short.CrossRefGoogle ScholarPubMed
Pronk, J. T., Yde Steensma, H. and van-Dijken, J. P., “Pyruvat metabolism in Saccharomyces cerevisiae”, Yeast 12 (1996) 16071633; http://www.ncbi.nlm.nih.gov/pubmed/9123965.3.0.CO;2-4>CrossRefGoogle Scholar
Rizzi, M., Baltes, M., Theobald, U. and Reuss, M., “In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model”, Biotechnol. Bioengng 55 (1997) 592608; doi:10.1002/(SICI)1097-0290(19970820)55:4¡592::AID-BIT2¿3.0.CO;2-C.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Rizzi, M., Theobald, U., Querfurth, E., Rohrhirsch, T., Bakes, M. and Reuss, M., “In vivo investigations of glucose transport in Saccharomyces cerevisiae”, Biotechnol. Bioengng 49 (1996) 316327; doi:10.1002/(SICI)1097-0290(19960205)49:3¡316::AID-BIT10¿3.0.CO;2-C.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Roussel, M. R., “The use of delay differential equations in chemical kinetics”, J. Phys. Chem. 100 (1996) 83238330; doi:10.1021/jp9600672.CrossRefGoogle Scholar
Schomburg, I., Chang, A., Placzek, S., Shngen, C., Rother, M., Lang, M., Munaretto, C., Ulas, S., Stelzer, M., Grote, A., Scheer, M. and Schomburg, D., “BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA”, Nucleic Acids Res. 41 (2013) D764D772; doi:10.1093/nar/gks1049 (database issue).CrossRefGoogle ScholarPubMed
Shampine, L. F. and Thompson, S., “Solving DDEs in MATLAB”, Appl. Numer. Math. 37 (2001) 441458; doi:10.1016/S0168-9274(00)00055-6.CrossRefGoogle Scholar
Sonnleitner, B. and Kappeli, O., “Growth of Saccaromyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis”, Biotechnol. & Bioengng 28 (1986) 927937; doi:10.1002/bit.260280620.CrossRefGoogle Scholar
Theobald, U., Mailinger, W., Baltes, M., Rizzi, M. and Reuss, M., “In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations”, Biotechnol. Bioengng 55 (1997) 305316; doi:10.1002/(SICI)1097-0290(19970720)55:2¡305::AID-BIT8¿3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Yi, S., Nelson, P. W. and Ulsoy, A. G., Time-delay sistems: analysis and control using the Lambert W function (World Scientific, Singapore, 2010).CrossRefGoogle Scholar