Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T10:07:36.326Z Has data issue: false hasContentIssue false

The dimension of attractors of nonautonomous partial differential equations

Published online by Cambridge University Press:  17 February 2009

T. Caraballo
Affiliation:
Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain; e-mail: [email protected].
J. A. Langa
Affiliation:
Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain; e-mail: [email protected].
J. Valero
Affiliation:
Universidad Cardenal Herrera CEU, Comisario 3, 03203 Elche, Alicante, Spain; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept of nonautonomous (or cocycle) attractors has become a proper tool for the study of the asymptotic behaviour of general nonautonomous partial differential equations. This is a time-dependent family of compact sets, invariant for the associated process and attracting “from –∞”. In general, the concept is rather different to the classical global attractor for autonomous dynamical systems. We prove a general result on the finite fractal dimensionality of each compact set of this family. In this way, we generalise some previous results of Chepyzhov and Vishik. Our results are also applied to differential equations with a nonlinear term having polynomial growth at most.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Balibrea, F. and Valero, J., “On dimension of attractors of differential inclusions and reaction-diffusion equations”, Discrete Contin. Dyn. Syst. 5 (1999) 515528.CrossRefGoogle Scholar
[2]Brezis, H., Anáalisis funcional (Alianza, Madrid, 1984). (Translated from Analyse foncrionelle (Masson, Paris, 1983).)Google Scholar
[3]Cheban, D. N., Kloeden, P. E. and Schmalfulβ, B., “The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems”, Nonlinear Dynam. Systems Theory 2 (2002) 928.Google Scholar
[4]Chepyzhov, V. V. and Vishik, M. I., “A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations”, Indiana Univ. Math. J. 42 (1993) 10571076.CrossRefGoogle Scholar
[5]Chepyzhov, V. V. and Vishik, M. I., “Attractors of nonautonomous dynamical systems and their dimension”, J. Math. Pures Appl. 73 (1994) 279333.Google Scholar
[6]Chepyzhov, V. V. and Vishik, M. I., “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal. 7 (1996) 4976.CrossRefGoogle Scholar
[7]Constantin, P., Foias, C. and Temam, R., “Attractors representing turbulent flows”, Mem. Amer. Math. Soc. 53, No. 314 (1985).Google Scholar
[8]Crauel, H., Debussche, A. and Flandoli, F., “Random attractors”, J. Dynam. Differential Equations 9 (1997) 307341.CrossRefGoogle Scholar
[9]Crauel, H. and Flandoli, F., “Attractors for random dynamical systems”, Probab. Theory Related Fields 100 (1994) 365393.CrossRefGoogle Scholar
[10]Crauel, H. and Flandoli, F., “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations 10 (1998) 449474.CrossRefGoogle Scholar
[11]Dafermos, C. M., “Semiflows associated with compact and uniform processes”, Math. Systems Theory 8 (1974/1975) 142149.CrossRefGoogle Scholar
[12]Debussche, A., “On the finite dimensionality of random attractors”, Stochastic Anal. Appl. 15 (1997) 473491.CrossRefGoogle Scholar
[13]Debussche, A., “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl. 77 (1998) 967988.CrossRefGoogle Scholar
[14]Eden, A., Foias, C., Nicolaenko, B. and Temam, R., Exponential attractors for dissipative evolution equations, RAM: Research in Applied Mathematics 37 (Masson, Paris, 1994).Google Scholar
[15]Eden, A. and Rakotoson, J. M., “Exponential attractors for a doubly nonlinear equation”, J. Math. Anal. Appl. 185 (1994) 321339.CrossRefGoogle Scholar
[16[Flandoli, F. and Schmalfuβ, B., “Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise”, Stochastics Stochastics Rep. 59 (1996) 2145.CrossRefGoogle Scholar
[17[Flandoli, F. and Schmalfuβ, B., “Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force”, J. Dynam. Differential Equations 11 (1999) 355398.CrossRefGoogle Scholar
[18]Hale, J., Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs 25 (Amer. Math. Soc., Providence, RI, 1988).Google Scholar
[19]Kloeden, P. E. and Schmalfuβ, B., “Asymptotic behaviour of nonautonomous difference inclusions”, Systems Control Lett. 33 (1998) 275280.CrossRefGoogle Scholar
[20]Ladyzhenskaya, O. A., “Some comments to my papers on the theory of attractors for abstract semigroups”, Zap. Nauchn. Sem. LOMI 182 (1992) 102112 (English translation J. Soviet Math. 62 (1992) 1789–1794), (in Russian).Google Scholar
[21]Marion, M., “Attractors for reaction-diffusion equations: existence and estimate of their dimension”, Appl. Anal. 25 (1987) 101147.CrossRefGoogle Scholar
[22]Metivier, G., “Valeurs propres d'operateurs définis par la restriction de systèmes variationelles a des sous-espaces”, J. Math. Pures Appl. 57 (1978) 133156.Google Scholar
[23]Robinson, J. C., Infinite-dimensional dynamical systems (Cambridge Univ. Press, Cambridge, 2002).Google Scholar
[24]Schenk-Hoppé, K. R., “Random attractors—general properties, existence and applications to stochastic bifurcation theory”, Discrete Comm. Dynam. Systems 4 (1998) 99130.CrossRefGoogle Scholar
[25]Schmalfuβ, B., “Backward cocycles and attractors of stochastic differential equations”, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. Reitmann, V., Riedrich, T. and Koksch, N.), (Technical University of Dresden, Dresden, 1992) 185192.Google Scholar
[26]Schmalfuβ, B., “Attractors for the nonautonomous dynamical systems”, in International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999) (eds. Fiedler, B., Gröoger, K. and Sprekels, J.), (World Sci. Publishing, River Edge, NJ, 2000) 684689.Google Scholar
[27]Temam, R., Infinite-dimensional dynamical systems in mechanics and physics (Springer, New York, 1988).CrossRefGoogle Scholar
[28]Valero, J., “Finite and infinite dimensional attractors of multivalued reaction-diffusion equations”, Acta Math. Hungar. 88 (2000) 239258.CrossRefGoogle Scholar