No CrossRef data available.
Article contents
Differential game with switching controls on Hilbert space
Published online by Cambridge University Press: 17 February 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study differential game problems in which the players can select different maximal monotone operators for the governing evolution system. Setting up our problem on a real Hilbert space, we show that the Elliott-Kalton upper and lower value of the game are viscosity solution of some Hamilton-Jacobi-Isaacs equations. Uniqueness is obtained by assuming condition analogous to the classical Isaacs condition, and thus the existence of value of the game follows.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1997
References
[1]Ahmed, N. U. and Teo, K. L., Optimal control of Distributed Parameter Systems (North Holland, Amsterdam, 1981).Google Scholar
[2]Crandall, M. G. and Lions, P. L., “Condition d'unicité pour les solutions generalisées des équations de Hamilton-Jacobi du premier ordre”, C.R. Acad. Sci. Paris 292 (1981) 183–186.Google Scholar
[3]Crandall, M. G. and Lions, P. L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 277 (1983) 1–42.CrossRefGoogle Scholar
[4]Crandall, M. G. and Lions, P. L., “Hamilton-Jacobi equations in infinite dimensions: Part IV. Unbounded linear terms”, J. Func. Anal. 90 (1990) 237–283.CrossRefGoogle Scholar
[5]Crandall, M. G. and Lions, P. L., “Hamilton-Jacobi equations in infinite dimensions: Part V. B-continuous solutions”, J. Func. Anal., 7 (1991) 417–465.CrossRefGoogle Scholar
[6]Elliott, R. J. and Kalton, N. J., “The existence of value in differential games”, Mem. Amer. Math. Soc. 126 (1972) 1–67.Google Scholar
[8]Guo, B. Z. and Luo, Z. H., “Initial-boundary value problem and exponential decay for a flexible beam vibration with gain adaptive direct strain feedback control”, to appear in Nonlinear Analysis.Google Scholar
[9]Krasovskii, N. N. and Subbotin, A. I., Game-theoretical control problems (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar
[10]Lions, P. L., “Une inegalite pour les operateurs elliptiques du second ordre”, Ann. Mat. Pura Appl. 127 (1981) 1–11.CrossRefGoogle Scholar
[11]Schaft, A. J. van der, “Nonlinear state space H∞ control theory” in Essays on control: perspectives in the theory and its applications, Ed. Trentelman, H. L. and Willems, J. C. (Birkh'auser, Boston, Basel, Berlin, 1993).Google Scholar
[12]Sobolevsky, P. E., “Equations with operators constituting an acute angle”, Dokl. Akad. Nauk USSR 116 (1957) 754–757 [In Russian].Google Scholar
[13]Song, J. and Yu, J. Y., Population Control theory (Springer-Verlag, New York, 1987).Google Scholar
[14]Yong, J., “A zero-sum differential game in a finite duration with switching strategies”, SI AM J. Control and Optim. 28 (1990) 1234–1250.CrossRefGoogle Scholar
[15]Yong, J., “Differential games with switching strategies”, J. of Math. Anal. Appl. 145 (1990) 455–467.CrossRefGoogle Scholar
[16]Yong, J., “Existence of the value for a differential game with switching strategies in a Banach space”, System Sci. & Math. 4 (1991) 321–340.Google Scholar
[17]Yong, J., “Zero-sum differential games involving impulse controls”, App. Math. Optim. 29 (1994) 243–261.CrossRefGoogle Scholar
[18]Yung, S. P., “Results on infinite dimensional Hamilton-Jacobi equations”, Ph.D. thesis, University of Wisconsin-Madison (1991).Google Scholar
[19]Yung, S. P., “Uniqueness of a Hamilton-Jacobi equation on Hilbert space”, Research report HKUM-92–3, University of Hong Kong.Google Scholar
[20]Zelikin, M. I. and Borisov, V. F., Theory of chattering control: with applications to astronautics, robotics, economics, and engineering (Birkhauser, Boston, 1994).CrossRefGoogle Scholar
You have
Access