Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T18:34:43.766Z Has data issue: false hasContentIssue false

DESIGN OF A NANOTORI-METALLOFULLERENE LOGIC GATE

Published online by Cambridge University Press:  25 August 2015

RICHARD K. F. LEE*
Affiliation:
Tou Tsai Biu, Basement, Mercantile Industrial and Warehouse Building, 16–24 Ta Chuen Ping Street, Kwai Chung, New Territories, Hong Kong email [email protected]
JAMES M. HILL
Affiliation:
School of Information Technology and Mathematical Sciences, University of South Australia, South Australia 5001, Australia email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the mechanics of a nano logic gate, comprising a metallofullerene which is located inside a square-shaped single-walled carbon nanotorus involving non-metallic, single-walled carbon nanotubes with perfect nanotoroidal corners. These are highly novel and speculative nanodevices whose construction, no doubt, involves many technical challenges. The energy for the system is obtained from the 6–12 Lennard-Jones potential with the continuous approximation. Our approach shows that there is not much difference between the energy when the metallofullerene is located in the tubes compared to when it is at the corners, and therefore the metallofullerene may be controlled by a small voltage. By applying two voltage inputs to produce external electric fields, one for the left–right motion and the other for the top–bottom motion, the metallofullerene can be moved to one of the four corners. Assuming that at the four corners there are charge detectors, the proposed device can be designed as a logic gate with different signals corresponding to particular gates.

Type
Research Article
Copyright
© 2015 Australian Mathematical Society 

References

Arden, W. and Muller, K. H., “Physical and technological limits in optical and x-ray lithography”, Microelectron. Eng. 6 (1987) 5360; doi:10.1016/0167-9317(87)90016-5.CrossRefGoogle Scholar
Bethune, D. S., Johnson, R. D., Salem, J. R., de Vries, M. S. and Yannoni, C. S., “Atoms in carbon cages: the structure and properties of endohedral fullerenes”, Nature 366 (1993) 123128 doi:10.1038/366123a0.CrossRefGoogle Scholar
Bloomstein, T. M., Marchant, M. F., Deneault, S., Hardy, D. E. and Rothschild, M., “22 nm immersion interference lithography”, Opt. Express 14 (2006) 64346443; doi:10.1364/OE.14.006434.CrossRefGoogle ScholarPubMed
Chan, Y., Lee, R. K. F. and Hill, J. M., “Metallofullerenes in composite carbon nanotubes as a nanocomputing memory device”, IEEE Trans. Nanotechnol. 10 (2011) 947952 doi:10.1109/TNANO.2010.2090170.CrossRefGoogle Scholar
Chen, G., Guo, Y., Karasawa, N. and Goddard III, W. A., “Electron–phonon interactions and superconductivity in K3 $\text{C}_{60}$”, Phys. Rev. B 48 (1993) 13959; doi:10.1103/PhysRevB.48.13959.CrossRefGoogle Scholar
Cioslowski, J. and Fleischmann, E. D., “Endohedral complexes: atoms and ions inside the $\text{C}_{60}$ cage”, J. Chem. Phys. 94 (1991) 37303734; doi:10.1063/1.459744.CrossRefGoogle Scholar
Cox, B. J. and Hill, J. M., “New carbon molecules in the form of elbow-connected nanotori”, J. Phys. Chem. C 111 (2007) 1085510860; doi:10.1021/jp0721402.CrossRefGoogle Scholar
Cox, B. J., Thamwattana, N. and Hill, J. M., “Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies”, Proc. R. Soc. Lond. A 463 (2007) 461476 doi:10.1098/rspa.2006.1771.CrossRefGoogle Scholar
Cox, B. J., Thamwattana, N. and Hill, J. M., “Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behaviour”, Proc. R. Soc. Lond. A 463 (2007) 477494 doi:10.1098/rspa.2006.1772.Google Scholar
Cumings, J. and Zettl, A., “Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes”, Science 289 (2000) 602604; doi:10.1126/science.289.5479.602.CrossRefGoogle ScholarPubMed
David, W. I. F., Ibberson, R. M., Mattewman, J. C., Prassides, K., Dennis, T. J. S., Hare, J. P., Kroto, H. W., Taylor, R. and Walton, D. R. M., “Crystal structure and bonding of ordered $\text{C}_{60}$ buckminsterfullerene”, Nature 353 (1991) 147149; doi:10.1038/353147a0.CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G. and Saito, R., “Carbon fibers based on $\text{C}_{60}$ and their symmetry”, Phys. Rev. B 45 (1992) 62346242; doi:10.1103/PhysRevB.45.6234.CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G. and Saito, R., “Physics of carbon nanotubes”, Carbon 33 (1995) 883891; doi:10.1016/0008-6223(95)00017-8.CrossRefGoogle Scholar
Girifalco, L. A., Hodak, M. and Lee, R. S., “Carbon nanotubes buckyballs ropes and a universal graphitic potential”, Phys. Rev. B 62 (2000) 13 104–13 110; doi:10.1103/PhysRevB.62.13104.CrossRefGoogle Scholar
Harriott, L. R., “Limits of lithography”, Proc. IEEE 89 (2001) 366374; doi:10.1109/5.915379.CrossRefGoogle Scholar
Hilder, T. A. and Hill, J. M., “Orbiting atoms and $\text{C}_{60}$ fullerenes in side carbon nanotori”, J. Appl. Phys. 101 (2007) 064319; doi:10.1063/1.2511490.CrossRefGoogle Scholar
Hwang, H. J., Byun, K. R., Lee, J. Y. and Kang, J. W., “A nanoscale field effect data storage of bipolar endo-fullerenes shuttle device”, Curr. Appl. Phys. 5 (2005) 609614 doi:10.1016/j.cap.2004.08.005.CrossRefGoogle Scholar
Iijima, S., “Helical microtubules of graphitic carbon”, Nature 354 (1991) 5658 doi:10.1038/354056a0.CrossRefGoogle Scholar
Itoh, S. and Ihara, S., “Toroidal form of carbon $\text{C}_{360}$”, Phys. Rev. B 47 (1993) 17031704 doi:10.1103/PhysRevB.47.1703.CrossRefGoogle Scholar
Itoh, S. and Ihara, S., “Toroidal forms of graphitic carbon. II. Elongated tori”, Phys. Rev. B 48 (1993) 83238328; doi:10.1103/PhysRevB.48.8323.CrossRefGoogle ScholarPubMed
Itoh, S. and Ihara, S., “Isomers of the toroidal forms of graphitic carbon”, Phys. Rev. B 49 (1994) 13 970–13 974; doi:10.1103/PhysRevB.49.13970.CrossRefGoogle ScholarPubMed
Jishi, R. A., Dresselhaus, M. S. and Dresselhaus, G., “Symmetry properties of chiral carbon nanotubes”, Phys. Rev. B 47 (1993) 16 671–16 674; doi:10.1103/PhysRevB.47.16671.CrossRefGoogle ScholarPubMed
Kamat, P. V. and Liz-marzan, L. M., Nanoscale materials (Kluwer Academic Publishers, London, 2003).Google Scholar
Kang, J. W. and Hwang, H. J., “A bucky shuttle three-terminal switching device: classical molecular dynamics study”, Physica E 23 (2004) 3644; doi:10.1016/j.physe.2003.11.271.CrossRefGoogle Scholar
Kang, J. W. and Hwang, H. J., “Carbon nanotube shuttle memory device”, Carbon 42 (2004) 30183021; doi:10.1016/j.carbon.2004.06.014.CrossRefGoogle Scholar
Kang, J. W. and Hwang, H. J., “Schematics and simulations of nanomemory device based on nanopeapods”, Mater. Sci. Eng. C 25 (2005) 843847; doi:10.1016/j.msec.2005.06.038.CrossRefGoogle Scholar
Kumar, R., Zyuban, V. and Tullsen, D. M., “Interconnections in multi-core architectures: understanding mechanisms overheads and scaling”, in: Proceedings of the 32nd International Symposium on Computer Architecture (IEEE, 2005) 408419; doi:10.1109/ISCA.2005.34.Google Scholar
Kwon, Y. K., Tománek, D. and Iijima, S., “Bucky shuttle memory device: synthetic approach and molecular dynamics simulations”, Phys. Rev. Lett. 82 (1999) 14701473 doi:10.1103/PhysRevLett.82.1470.CrossRefGoogle Scholar
Laasonen, K., Andreoni, W. and Parrinello, M., “Structural and electronic properties of La-at-$\text{C}_{82}$”, Science 258 (1992) 19161918; doi:10.1126/science.258.5090.1916.CrossRefGoogle Scholar
Lee, R. K. F., Cox, B. J. and Hill, J. M., “The geometric structure of single-walled nanotubes”, Nanoscale 2 (2010) 859872; doi:10.1039/B9NR00433E.CrossRefGoogle ScholarPubMed
Lee, R. K. F. and Hill, J. M., “Design of a two-state shuttle memory device”, CMC: Comput. Mater. Contin. 20 (2010) 85100; doi:10.3970/cmc.2010.020.085.Google Scholar
Lee, R. K. F. and Hill, J. M., “Composite multiwalled carbon nanotubes as memory devices and logic gates”, J. Nanotechnol. Eng Med. 3 (2012) 010902010907; doi:10.1115/1.4006859.CrossRefGoogle Scholar
Lee, J., Kim, H., Kahng, S. J., Kim, G., Son, Y. W., Ihm, J., Kato, H., Wang, Z. W., Okazaki, T., Shinohara, H. and Kuk, Y., “Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes”, Nature 415 (2002) 10051008; doi:10.1038/4151005a.CrossRefGoogle ScholarPubMed
Meunier, V., Lambin, Ph. and Lucas, A. A., “Atomic and electronic structures of large and small carbon tori”, Phys. Rev. B 57 (1998) 14 886–14 890; doi:10.1103/PhysRevB.57.14886.CrossRefGoogle Scholar
Moore, G. E., “Progress in digital integrated electronics”, IEEE Tech. Digest 21 (1975) 1113 doi:10.1109/N-SSC.2006.4804410.Google Scholar
Thompson, S. E. and Parthasarathy, S., “Moore’s law: the future of Si microelectronics”, Mater. Today 9 (2006) 2025; doi:10.1016/S1369-7021(06)71539-5.CrossRefGoogle Scholar
Xiao, S., Andersen, D. R. and Yang, W., “Design and analysis of nanotube-based memory cells”, Nanoscale Res. Lett. 3 (2008) 416420; doi:10.1007/s11671-008-9167-8.CrossRefGoogle Scholar
Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F. and Ruoff, R. S., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science 287 (2000) 637640 doi:10.1126/science.287.5453.637.CrossRefGoogle ScholarPubMed