Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T08:34:25.015Z Has data issue: false hasContentIssue false

CPDO WITH FINITE TERMINATION: MAXIMAL RETURN UNDER CASH-IN AND CASH-OUT CONDITIONS

Published online by Cambridge University Press:  10 February 2016

X. YANG
Affiliation:
Department of Mathematics, Tongji University, Shanghai 200092, PR China email [email protected], [email protected], [email protected]
J. LIANG*
Affiliation:
Department of Mathematics, Tongji University, Shanghai 200092, PR China email [email protected], [email protected], [email protected]
Y. WU
Affiliation:
Department of Mathematics, Tongji University, Shanghai 200092, PR China email [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The maximal return and optimal leverage of a constant proportion debt obligation with finite termination and two boundaries are analysed by numerically solving Hamilton–Jacobi–Bellman equations. We discuss the probabilities of the asset value reaching the upper or lower bound under the optimal control and the optimal control problem with a time-varying boundary. Furthermore, we also analyse the relationship between the optimal return, the optimal policy and different parameters.

Type
Research Article
Copyright
© 2016 Australian Mathematical Society 

References

Baydar, E., Di-Graziano, G. and Korn, R., “Theoretical solution versus industry standard: optimal leverage function for CPDOs”, Bl. DGVFM 30 (2009) 1529; doi:10.1007/s11857-009-0081-7.Google Scholar
Çekiç, A. İ. and Uğur, Ö., “Pricing formulae for constant proportion debt obligation notes: the Laplace transform technique”, J. Comput. Appl. Math. 259 (2014) 362370; doi:10.1016/j.cam.2013.06.006.Google Scholar
Cont, R. and Jessen, C., “Constant proportion debt obligations (CPDOs) modeling and risk analysis”, Quant. Finance 12 (2012) 11991218http://ssrn.com/abstract=1372414.Google Scholar
Dorn, J., “Modeling of CPDOs—identifying optimal and implied leverage”, J. Bank. Finance 34 (2010) 13711382; doi:10.1016/j.jbankfin.2009.12.005.CrossRefGoogle Scholar
Fleming, W. H. and Soner, H. M., Controlled Markov processes and viscosity solutions, 2nd edn (Springer, New York, 2003).Google Scholar
Forsyth, P. A. and Labahn, G., “Numerical methods for controlled Hamilton–Jacobi–Bellman PDEs in finance”, 2007; https://cs.uwaterloo.ca/∼glabahn/Papers/borrow-lend.pdf.CrossRefGoogle Scholar
Gordy, M. B. and Willemann, S., “Constant proportion debt obligations: a post-mortem analysis of rating models”, Manag. Sci. 58 (2012) 476492http://www.federalreserve.gov/pubs/feds/2010/201005/201005pap.pdf.Google Scholar
Guiso, L. and Paiella, M., “Risk aversion, wealth, and background risk”, J. Eur. Econ. Assoc. 6 (2008) 11091150; doi:10.1162/JEEA.2008.6.6.1109.CrossRefGoogle Scholar
Hojgaard, B. and Taksar, M., “Optimal proportional reinsurance policies for diffusion models with transaction costs”, Insurance Math. Econom. 22 (1998) 4151; doi:10.1016/S0167-6687(98)00007-9.Google Scholar
Jobst, N., Xuan, Y., Zarya, S., Sandstrom, N. and Gilkes, K., “CPDOs laid bare: structure, risk and rating sensitivity”, 2007;http://www.math.ust.hk/∼maykwok/courses/Adv_Num_Met/dbrs_cpdo.pdf.Google Scholar
Jonsson, M. and Sircar, R., “Optimal investment problems and volatility homogenization approximations”, NATO Sci. Ser. II Math. 75 (2002) 314328http://www.princeton.edu/%7Esircar/Public/ARTICLES/montreal.pdf.Google Scholar
Karatzas, I., Lehoczky, J. P. and Shreve, S. E., “Optimal portfolio and consumption decisions for a “small investor” on a finite horizon”, SIAM J. Control Optim. 25 (1987) 15571586; doi:10.1137/0325086.Google Scholar
Karatzas, I. and Shreve, S. E., Methods of mathematical finance (Springer, New York, 1998).Google Scholar
Li, X. and Song, Q., “Markov chain approximation methods on generalized HJB equation”, Proceedings of the 46th IEEE Conf. on Decision and Control, (New Orleans, USA, 2007), 4069–4074; http://www.researchgate.net/publication/4312482_Markov_chain_approximation_methods_on_generalized_HJB_equation.Google Scholar
Neilson, W. S. and Winter, H., “A verification of the expected utility calibration theorem”, Econ. Lett. 74 (2002) 347351http://web.utk.edu/∼wneilson/EcLett-Calibration.pdf.Google Scholar
Song, Q., “Convergence of Markov chain approximation on generalized HJB equation and its applications”, Automatica 44 (2008) 761766; doi:10.1016/j.automatica.2007.07.014.CrossRefGoogle Scholar
Taksar, M. I. and Markussen, C., “Optimal dynamic reinsurance policies for large insurance portfolios”, Finance Stoch. 7 (2003) 97121; doi:10.1007/s007800200073.Google Scholar
Torresetti, R., Pallavicini, A., Argentaria, B. B. V. and Leonardo, B., “Stressing rating criteria allowing for default clustering: the CPDO case”, 2007; http://mpra.ub.uni-muenchen.de/17104/.Google Scholar
Varloot, E., Charpin, G. and Charalampidou, E., “CPDO insights on rating actions and manager impact using a new formula”, 2007;http://www.defaultrisk.com/_pdf6J4/CPDO_UBS_CPDO_Insights_n_New_Formula.pdf.Google Scholar
Wang, J. and Forsyth, P. A., “Maximal use of central differencing for Hamilton–Jacobi–Bellman PDEs in finance”, SIAM J. Numer. Anal. 46 (2008) 15801601; doi:10.1137/060675186.Google Scholar
Wu, Y., “Valuation of credit derivatives and optimization research”, Masters Dissertation, Tongji University, Shanghai, 2012.Google Scholar
Yang, X., Liang, J. and Wu, Y., “Optimal control of perpetual CPDO: minimal cash-out probability and maximal conditional return”, Optimal Control Appl. Methods 35 (2014) 383394; doi:10.1002/oca.2075.Google Scholar