Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T22:43:40.439Z Has data issue: false hasContentIssue false

A COMPARISON OF CRITICAL TIME DEFINITIONS IN MULTILAYER DIFFUSION

Published online by Cambridge University Press:  20 March 2012

R. I. HICKSON*
Affiliation:
Applied and Industrial Mathematics Research Group, School of Physical, Environmental and Mathematical Sciences, University of New South Wales Canberra, Northcott Drive, Canberra, ACT 2600, Australia (email: [email protected], [email protected]) National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected], [email protected])
S. I. BARRY
Affiliation:
National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected], [email protected])
H. S. SIDHU
Affiliation:
Applied and Industrial Mathematics Research Group, School of Physical, Environmental and Mathematical Sciences, University of New South Wales Canberra, Northcott Drive, Canberra, ACT 2600, Australia (email: [email protected], [email protected])
G. N. MERCER
Affiliation:
Applied and Industrial Mathematics Research Group, School of Physical, Environmental and Mathematical Sciences, University of New South Wales Canberra, Northcott Drive, Canberra, ACT 2600, Australia (email: [email protected], [email protected]) National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia (email: [email protected], [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are many ways to define how long diffusive processes take, and an appropriate “critical time” is highly dependent on the specific application. In particular, we are interested in diffusive processes through multilayered materials, which have applications to a wide range of areas. Here we perform a comprehensive comparison of six critical time definitions, outlining their strengths, weaknesses, and potential applications. A further four definitions are also briefly considered. Equivalences between appropriate definitions are determined in the asymptotic limit as the number of layers becomes large. Relatively simple approximations are obtained for the critical time definitions. The approximations are more accessible than inverting the analytical solution for time, and surprisingly accurate. The key definitions, their behaviour and approximations are summarized in tables.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2012

References

[1]Allwright, D., Blount, M., Gramberg, H. and Hewitt, I., Reaction–diffusion models of decontamination. Study group report (ESGI 2009, Southampton), Smith Institute, 2009, http://www.smithinst.ac.uk/Projects/ESGI68/ESGI68-DSTL/Report.Google Scholar
[2]Barrer, R. M., “Diffusion and permeation in heterogeneous media”, in: Diffusion in polymers (eds Crank, J. and Park, G. S.), (Academic Press, London, 1968) 165217.Google Scholar
[3]Barry, S. I. and Sweatman, W. L., “Modelling heat transfer in steel coils”, ANZIAM J. (E) 50 (2009) C668C681.CrossRefGoogle Scholar
[4]Crank, J., The mathematics of diffusion (Oxford University Press, London, 1957).Google Scholar
[5]de Monte, F., Beck, J. V. and Amos, D. E., “Diffusion of thermal disturbances in two-dimensional cartesian transient heat conduction”, Int. J. Heat Mass Tran. 51 (2008) 59315941; doi:10.1016/j.ijheatmasstransfer.2008.05.015.Google Scholar
[6]Frisch, H. L., “The time lag in diffusion”, J. Phys. Chem. 62 (1957) 401404; doi:10.1021/j150547a018.CrossRefGoogle Scholar
[7]Graff, G. L., Williford, R. E. and Burrows, P. E., “Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation”, J. Appl. Phys. 96 (2004) 18401849; doi:10.1063/1.1768610.Google Scholar
[8]Hickson, R. I., “Critical times of heat and mass transport through multiple layers”, Ph.D. Thesis, PEMS, UNSW@ADFA, April 2010.Google Scholar
[9]Hickson, R. I., Barry, S. I. and Mercer, G. N., “Critical times in multilayer diffusion. Part 1: Exact solutions”, Int. J. Heat Mass Tran. 52 (2009) 57765783; doi:10.1016/j.ijheatmasstransfer.2009.08.013.Google Scholar
[10]Hickson, R. I., Barry, S. I. and Mercer, G. N., “Critical times in multilayer diffusion. Part 2: Approximate solutions”, Int. J. Heat Mass Tran. 52 (2009) 57845791; doi:10.1016/j.ijheatmasstransfer.2009.08.012.CrossRefGoogle Scholar
[11]Hickson, R. I., Barry, S. I. and Mercer, G. N., “Exact and numerical solutions for effective diffusivity and time lag through multiple layers”, ANZIAM J. (E) 49 (2009) C324C340.Google Scholar
[12]Hickson, R. I., Barry, S. I., Mercer, G. N. and Sidhu, H. S., “Finite difference schemes for multilayer diffusion”, Math. Comput. Model. 54 (2011) 210220; doi:10.1016/j.mcm.2011.02.003.CrossRefGoogle Scholar
[13]Hickson, R. I., Barry, S. I. and Sidhu, H. S., “Critical times in one- and two-layered diffusion”, AJEE 15 (2009) 7784; http://www.engineersmedia.com.au/journals/aaee/pdf/AJEE_15_2_Hickson.pdf.CrossRefGoogle Scholar
[14]Hickson, R. I., Barry, S. I., Sidhu, H. S. and Mercer, G. N., “Critical times in single-layer reaction diffusion”, Int. J. Heat Mass Tran. 54 (2011) 26422650; doi:10.1016/j.ijheatmasstransfer.2009.08.012.Google Scholar
[15]Landman, K. and McGuinness, M., “Mean action time for diffusive processes”, J. Appl. Math. Decis. Sci. 4 (2000) 125141; doi:10.1155/S1173912600000092.CrossRefGoogle Scholar
[16]McGuinness, M., Sweatman, W., Boawan, D. and Barry, S., “Annealing steel coils”, in: Proceedings of the 2008 MISG (eds T. Marchant, M. Edwards and G. Mercer), 2009, http://www.uow.edu.au/content/groups/public/@web/@inf/@math/documents/doc/uow053938.pdf.Google Scholar
[17]McNabb, A., “Mean action times, time lags and mean first passage times for some diffusion problems”, Math. Comput. Model. 18 (1993) 123129; doi:10.1016/0895-7177(93)90221-J.CrossRefGoogle Scholar
[18]McNabb, A. and Wake, G. C., “Heat conduction and finite measures for transition times between steady states”, IMA J. Appl. Math. 47 (1991) 193206; doi:10.1093/imamat/47.2.193.CrossRefGoogle Scholar
[19]Petrovskii, S. and Shigesada, N., “Some exact solutions of a generalized Fisher equation related to the problem of biological invasion”, Math. Biosci. 172 (2001) 7394; doi:10.1016/S0025-5564(01)00068-2.CrossRefGoogle Scholar
[20]Siegel, R. A., “A Laplace transform technique for calculating diffusion time lags”, J. Membr. Sci. 26 (1986) 251262; doi:10.1016/S0376-7388(00)82110-9.CrossRefGoogle Scholar
[21]Siegel, R. A., “Algebraic, differential, and integral relations for membranes in series and other multilaminar media: permeabilities, solute consumption, lag times, and mean first passage times”, J. Phys. Chem. 95 (1991) 25562565; doi:10.1021/j100159a083.Google Scholar
[22]Thornton, A. W., Hilder, T., Hill, A. J. and Hill, J. M., “Predicting gas diffusion regime within pores of different size, shape and composition”, J. Membr. Sci. 336 (2009) 101108; doi:10.1016/j.memsci.2009.03.019.CrossRefGoogle Scholar
[23]Yuen, W. Y. D., “Transient temperature distribution in a multilayer medium subject to radiative surface cooling”, Appl. Math. Model. 18 (1994) 93100; doi:10.1016/0307-904X(94)90164-3.Google Scholar