Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T22:44:45.627Z Has data issue: false hasContentIssue false

Biorthogonal interpolatory multiscaling functions and corresponding multiwavelets

Published online by Cambridge University Press:  17 February 2009

Yang Shouzhi
Affiliation:
Dept of Maths Shantou UniversityShantou 515063 P.R. [email protected].
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method for constructing a pair of biorthogonal interpolatory multiscaling functions is given and an explicit formula for constructing the corresponding biorthogonal multiwavelets is obtained. A multiwavelet sampling theorem is also established. In addition, we improve the stability of the biorthogonal interpolatory multiwavelet frame by the linear combination of a pair of biorthogonal interpolatory multiwavelets. Finally, we give an example illustrating how to use our method to construct biorthogonal interpolatory multiscaling functions and corresponding multiwavelets.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

references

[1]Chui, C. K.andLian, J., “A study on orthonormal multiwavelets", J Appl Numer Math. 20 (1996) 273298.CrossRefGoogle Scholar
[2]Chui, C.K. and Wang, J. Z., “A cardinal spline approach to wavelets”, Proc Amen Math Soc. 113 (1991)785793.CrossRefGoogle Scholar
[3]Daubechies, I. andLagarias, J. C., “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, S1AMJ Math Anal. 23 (1991) 10311079.CrossRefGoogle Scholar
[4]Donovan, G. C., Geronimo, J. S. and Hardin, D. P., “Construction of orthogonal wavelets using fractal interpolation functions”, SIAM J Math Anal. 27(1996) 11581192.CrossRefGoogle Scholar
[5]Geronimo, J. S., Hardin, D. P. and Massopust, P. R., “Fractal functions and wavelet expansions based on several scaling functions”, J Approx Theory 78 (1994) 371401.CrossRefGoogle Scholar
[6]Goh, S. S., Jiang, Qingtang and Xia, Tao, “Construction of biorthogonal multiwavelets using the lifting scheme”, Appl Comput Harmon Anal. 9 (2000) 336352.CrossRefGoogle Scholar
[7]Goodman, T. N. T., Lee, S. L. and Tang, W. S., “Wavelets in wandering subspaces”, Trans Amer Math Soc. 338 (1993) 639654.CrossRefGoogle Scholar
[8]Lian, J., “Orthogonal criteria for multiscaling functions”, Appl Comp Harm Anal 5 (1998) 277311.CrossRefGoogle Scholar
[9]Rota, G. C. and Strang, G., “A note on the joint spectral radius”, Indag Math 22 (1960) 379381.CrossRefGoogle Scholar
[10]Yang, Shouzhi, “A fast algorithm for constructing orthogonal multiwavelets”, ANZIAM J 46 (2004) 185202.Google Scholar
[11]Yang, Shouzhi, “An algorithm for constructing biorthogonal multiwavelets with higher approximation orders”, ANZ1AM J 47 (2006) 513526.Google Scholar
[12]Yang, Shouzhi, Cheng, Zhengxing and Wang, Hongyong, “Construction of biorthogonal multiwavelets”, J Math Anal Appl 276 (2002) 112.CrossRefGoogle Scholar
[13]Strang, G. and Zhou, D. X., “Inhomogeneous refinement equations”, J Fourier Anal Appl 4 (1998) 733747.CrossRefGoogle Scholar
[14]Xia, X. G. and Zhang, Z., “On sampling theorem, wavelets, and wavelet transforms”, IEEE Trans Signal Processing 41 (1993) 35243535.CrossRefGoogle Scholar
[15]Zhou, D. X., “Existence of multiple refinable distributions”, Michigan Math J 44 (1997) 317329.CrossRefGoogle Scholar
[16]Zhou, D. X., “The p-norm joint spectral radius for even integers”, Methods Appl Anal 5 (1998) 3954.CrossRefGoogle Scholar
[17]Zhou, D. X, “Multiple refinable Hermite interpolants”, J Approx Theory 102(2000) 4671.CrossRefGoogle Scholar
[18]Zhou, D. X., “Interpolatory orthogonal multiwavelets and refinable functions”, IEEE Trans Signal Processing 50 (2002) 520527.CrossRefGoogle Scholar