Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T11:00:46.060Z Has data issue: false hasContentIssue false

A BIOLOGICAL PROCESS SUBJECT TO NONCOMPETITIVE SUBSTRATE INHIBITION IN A GENERALIZED FLOW REACTOR

Published online by Cambridge University Press:  26 July 2013

M. I. NELSON*
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia
T. NICHOLLS
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia
N. HAMZAH
Affiliation:
Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyse the steady-state operation of a continuous flow bioreactor in which the biochemical reaction is governed by noncompetitive substrate inhibition (Andrews kinetics). A generalized reactor model is used in which the well-stirred bioreactor and the idealized membrane bioreactor are special cases. As generic properties of systems subject to substrate inhibition have been obtained by other authors, we discuss reaction engineering features specific to Andrews kinetics.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Society 

References

Andrews, J. F., “A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates”, Biotechnol. Bioeng. 10 (1968) 707724; doi:10.1002/bit.260100602.CrossRefGoogle Scholar
Bush, A. W. and Cook, A. E., “The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater”, J. Theoret. Biol. 63 (1976) 385395; doi:10.1016/0022-5193(76)90041-2.CrossRefGoogle ScholarPubMed
Butler, G. J. and Wolkowicz, G. S. K., “A mathematical model of the chemostat with a general class of functions describing nutrient uptake”, SIAM J. Appl. Math. 45 (1985) 138151; doi:10.1137/0145006.CrossRefGoogle Scholar
Costa, F., Quintelas, C. and Tavares, T., “Kinetics of biodegradation of diethylketone by Arthrobacter viscosus”, Biodegradation 23 (2012) 8192; doi:10.1007/s10532-011-9488-7.CrossRefGoogle ScholarPubMed
Economou, C. N., Aggelis, G., Pavlou, S. and Vayenas, D. V., “Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions”, Biotechnol. Bioeng. 108 (2010) 10491055; doi:10.1002/bit.23026.CrossRefGoogle ScholarPubMed
Fiedler, B. and Hsu, S.-B., “Non-periodicity in chemostat equations: a multi-dimension negative Bendixson–Dulac criterion”, J. Math. Biology 59 (2009) 233253; doi:10.1007/s00285-008-0229-4.CrossRefGoogle Scholar
Huang, D. and Becker, J. G., “Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations”, Environ. Sci. Technol. 45 (2011) 10931099; doi:10.1021/es102729v.CrossRefGoogle ScholarPubMed
Jordan, D. W. and Smith, P., Nonlinear ordinary differential equations, 2nd edn (Clarendon Press, 1989).Google Scholar
Li, B., “Global asymptotic behaviour of the chemostat: General response functions and different removal rates”, SIAM J. Appl. Appl. Math. 59 (1998) 411422; doi:10.1137/S003613999631100X.CrossRefGoogle Scholar
Sari, T., “Lyapunov function for the chemostat with variable yields”, C. R. Math. 348 (2010) 747751; doi:10.1016/j.crma.2010.06.008.CrossRefGoogle Scholar
Sari, T. and Mazenc, F., “Global dynamics of the chemostat with different removal rates and variable yields”, Math. Biosci. Engng. 8 (2011) 827840; doi:10.3934/mbe.2011.8.827.Google ScholarPubMed
Wang, L. and Wolkowicz, G. S. K., “A delayed chemostat model with general nonmonotone response functions and differential removal rates”, J. Math. Anal. Appl. 321 (2006) 452468; doi:10.1016/j.jmaa.2005.08.014.CrossRefGoogle Scholar
Wolkowicz, G. S. K. and Lu, Z., “Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates”, SIAM J. Appl. Math. 52 (1992) 222233; doi:10.1137/0152012.CrossRefGoogle Scholar